Spectral Asymptotics for Stable Trees

David A Croydon (University of Warwick)
Benjamin M Hambly (University of Oxford)

Abstract


We calculate the mean and almost-sure leading order behaviour of the high frequency asymptotics of the eigenvalue counting function associated with the natural Dirichlet form on $\alpha$-stable trees, which lead in turn to short-time heat kernel asymptotics for these random structures. In particular, the conclusions we obtain demonstrate that the spectral dimension of an $\alpha$-stable tree is almost-surely equal to $2\alpha/(2\alpha-1)$, matching that of certain related discrete models. We also show that the exponent for the second term in the asymptotic expansion of the eigenvalue counting function is no greater than $1/(2\alpha-1)$. To prove our results, we adapt a self-similar fractal argument previously applied to the continuum random tree, replacing the decomposition of the continuum tree at the branch point of three suitably chosen vertices with a recently developed spinal decomposition for $\alpha$-stable trees

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1772-1801

Publication Date: November 14, 2010

DOI: 10.1214/EJP.v15-819

References

  1. Aldous, D. The continuum random tree. III. Ann. Probab. 21 (1993), no. 1, 248--289. MR1207226 (94c:60015)
  2. Aldous, D. Recursive self-similarity for random trees, random triangulations and Brownian excursion. Ann. Probab. 22 (1994), no. 2, 527--545. MR1288122 (95i:60007)
  3. Croydon, D. Scaling limits for simple random walks on random ordered graph trees. Adv. in Appl. Probab. 42 (2010), no. 2, 528--558. MR2675115
  4. Croydon, D.; Hambly, B. Self-similarity and spectral asymptotics for the continuum random tree. Stochastic Process. Appl. 118 (2008), no. 5, 730--754. MR2411518 (2009d:60251)
  5. Croydon, D.; Kumagai, T. Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive. Electron. J. Probab. 13 (2008), no. 51, 1419--1441. MR2438812 (2010g:60221)
  6. Duquesne, T. A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab. 31 (2003), no. 2, 996--1027. MR1964956 (2004a:60076)
  7. Duquesne, T.; Le Gall, J.-F. Random trees, LÈvy processes and spatial branching processes. AstÈrisque No. 281 (2002), vi+147 pp. MR1954248 (2003m:60239)
  8. Duquesne, T.; Le Gall, J.-F. Probabilistic and fractal aspects of LÈvy trees. Probab. Theory Related Fields 131 (2005), no. 4, 553--603. MR2147221 (2006d:60123)
  9. Duquesne, T.; Le Gall, J.-F. The Hausdorff measure of stable trees. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 393--415. MR2291942 (2008c:60081)
  10. Fukushima, M.; Ōshima, Y.; Takeda, M. Dirichlet forms and symmetric Markov processes. de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994. x+392 pp. ISBN: 3-11-011626-X MR1303354 (96f:60126)
  11. Haas, B. Loss of mass in deterministic and random fragmentations. Stochastic Process. Appl. 106 (2003), no. 2, 245--277. MR1989629 (2004h:82078)
  12. Haas, B.; Miermont, G. The genealogy of self-similar fragmentations with negative index as a continuum random tree. Electron. J. Probab. 9 (2004), no. 4, 57--97 (electronic). MR2041829 (2004m:60086)
  13. Haas, B.; Pitman, J.; Winkel, M. Spinal partitions and invariance under re-rooting of continuum random trees. Ann. Probab. 37 (2009), no. 4, 1381--1411. MR2546748
  14. Hambly, B. On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets. Probab. Theory Related Fields 117 (2000), no. 2, 221--247. MR1771662 (2002h:28011)
  15. IvriÄ­, V. Y. The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary. (Russian) Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 25--34. MR0575202 (82m:58057)
  16. Karlin, S. On the renewal equation. Pacific J. Math. 5, (1955). 229--257. MR0070877 (17,49b)
  17. Kigami, J. Resistance forms, quasisymmetric maps and heat kernel estimates, Preprint.
  18. Kigami, J. Harmonic calculus on limits of networks and its application to dendrites. J. Funct. Anal. 128 (1995), no. 1, 48--86. MR1317710 (96e:60130)
  19. Kigami, J. Analysis on fractals. Cambridge Tracts in Mathematics, 143. Cambridge University Press, Cambridge, 2001. viii+226 pp. ISBN: 0-521-79321-1 MR1840042 (2002c:28015)
  20. Kigami, J.; Lapidus, M. L. Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Comm. Math. Phys. 158 (1993), no. 1, 93--125. MR1243717 (94m:58225)
  21. Le Gall, J.-F. Random real trees. Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 1, 35--62. MR2225746 (2007g:60055)
  22. Miermont, G. Self-similar fragmentations derived from the stable tree. I. Splitting at heights. Probab. Theory Related Fields 127 (2003), no. 3, 423--454. MR2018924 (2005m:60163)
  23. Miermont, G. Self-similar fragmentations derived from the stable tree. II. Splitting at nodes. Probab. Theory Related Fields 131 (2005), no. 3, 341--375. MR2123249 (2006e:60107)
  24. Nerman, O. On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrsch. Verw. Gebiete 57 (1981), no. 3, 365--395. MR0629532 (82m:60104)
  25. Pitman, J.; Yor, M. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 (1997), no. 2, 855--900. MR1434129 (98f:60147)


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.