Transition Density Asymptotics for Some Diffusion Processes with Multi-Fractal Structures
Takashi Kumagai (Kyoto University)
Abstract
We study the asymptotics as $t \to 0$ of the transition density of a class of $\mu$-symmetric diffusions in the case when the measure $\mu$ has a multi-fractal structure. These diffusions include singular time changes of Brownian motion on the unit cube.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-23
Publication Date: March 16, 2001
DOI: 10.1214/EJP.v6-82
References
- Barlow, M. T. (1998), Diffusions on fractals, Lectures on Probability Theory and Statistics: Ecole d'Eté de Probabilités de Saint-Flour XXV, Springer, Berlin Heidelberg New York. Math. Review 2000a:60148
- Barlow, M. T. and Bass, R. F. (1989), The construction of Brownian motion on the Sierpinski carpet, Ann. Inst. H. Poincaré 25, 225-257. Math. Review 91d:60183
- Barlow, M. T. and Bass, R. F. (1990), Local times for Brownian motion on the Sierpinski carpet, Probab. Theory Relat. Fields 85, 91-104. Math. Review 91j:60129
- Barlow, M. T. and Bass, R. F. (1992), Transition densities for Brownian motion on the Sierpinski carpet, Probab. Theory Relat. Fields 91, 307-330. Math. Review 93k:60203
- Barlow, M. T. and Bass, R. F. (1999), Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math. 51, 673-744. Math. Review 2000i:60083
- Barlow, M. T., Bass, R. F. and Burdzy, K. (1997), Positivity of Brownian transition densities, Elect. Comm. in Probab. 2, 43-51. Math. Review 99e:60166
- Barlow, M. T. and Hambly, B. M. (1997), Transition density estimates for Brownian motion on scale irregular Sierpinski gasket, Ann. Inst. H. Poincaré 33, 531-557. Math. Review 98k:60137
- Barlow, M. T. and Perkins, E. A. (1988), Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Fields 79, 543-624. Math. Review 89g:60241
- Fukushima, M., Oshima, Y. and Takeda, M. (1994), Dirichlet forms and symmetric Markov processes, de Gruyter, Berlin. Math. Review 96f:60126
- Fujita, T. (1990), Some asymptotic estimates of transition probability densities for generalized diffusion processes with self-similar speed measures, Publ. Res. Inst. Math. Sci. 26, 819-840. Math. Review 92f:60134
- Hambly, B. M. and Jones, O. D., Asymptotically one-dimensional diffusion on the Sierpinski gasket and multi-type branching processes with varying environment, 1998 (preprint) Math. Review number not available.
- Hambly, B. M., Kigami, J. and Kumagai, T. (2002), Multifractal formalisms for the local spectral and walk dimensions, Maths. Proc. Cam. Phil. Soc., to appear. Math. Review number not available.
- Hambly, B. M. and Kumagai, T. (1999), Transition density estimates for diffusions on post critically finite self-similar fractals, Proc. London Math. Soc. 78, 431-458. Math. Review 99m:60118
- Hambly, B. M., Kumagai, T., Kusuoka, S. and Zhou, X. Y. (2000), Transition density estimates for diffusion processes on homogeneous random Sierpinski carpets, J. Math. Soc. Japan 52, 373-408. Math. Review 2001e:60158
- Itô, K. and McKean, Jr. H. P. (1974), Diffusion processes and thier sample paths (Second printing), Springer, Berlin. Math. Review 33 #8031
- Kigami, J. (1993), Harmonic calculus on P.C.F. self-similar sets, Trans. Amer. Math. Soc. 335, 721-755. Math. Review 93d:39008
- Kigami, J. (2000), Markov property of Kusuoka-Zhou's Dirichlet forms on self-similar sets, J. Math. Sci. Univ. Tokyo 7, 27-33. Math. Review 1 749 979
- Kigami, J. (2001), Analysis on fractals, Cambridge Univ. Press, to appear. Math. Review number not available.
- Kigami, J. and Lapidus, M. L. (1993), Weyl's spectral problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals, Comm. Math. Phys. 158, 93-125. Math. Review 94m:58225
- Kumagai, T. (1993), Regularity, closedness and spectral dimensions of the Dirichlet forms on P.C.F. self-similar sets, J. Math. Kyoto Univ. 33, 765-786. Math. Review 94i:28006
- Kusuoka, S. and Zhou, X. Y. (1992), Dirichlet forms on fractals: Poincaré constant and resistance, Probab. Theory Relat. Fields 93, 169-196. Math. Review 94e:60069
- Landkof, N. S. (1972), Foundations of Modern Potential Theory, Springer, New York-Heidelberg. Math. Review 50 #2520
- Metz, V. (1996), Renormalization contracts on nested frcatals, J. Reine Angew. Math. 480, 161-175. Math. Review 98b:31007
- Osada, H. (2001), A family of diffusion processes on Sierpinski carpets, Probab. Theory Relat. Fields 119, 275-310. Math. Review 1 818 249
- Sabot, C. (1997), Existence and uniqueness of diffusions on finitely ramified self-similar fractals, Ann. Sci. Ecole Norm. Sup. 30, 605-673. Math. Review 98h:60118

This work is licensed under a Creative Commons Attribution 3.0 License.