Stochastic Domination for the Ising and Fuzzy Potts Models

Marcus Warfheimer (Chalmers University of Technology and University of Gothenburg)

Abstract


We discuss various aspects concerning stochastic domination for the Ising model and the fuzzy Potts model. We begin by considering the Ising model on the homogeneous tree of degree $d$, $\mathbb{T}^d$. For given interaction parameters $J_1$, $J_2>0$ and external field $h_1\in\mathbb{R}$, we compute the smallest external field $\tilde{h}$ such that the plus measure with parameters $J_2$ and $h$ dominates the plus measure with parameters $J_1$ and $h_1$ for all $h\geq\tilde{h}$. Moreover, we discuss continuity of $\tilde{h}$ with respect to the three parameters $J_1$, $J_2$, $h_1$ and also how the plus measures are stochastically ordered in the interaction parameter for a fixed external field. Next, we consider the fuzzy Potts model and prove that on $\mathbb{Z}^d$ the fuzzy Potts measures dominate the same set of product measures while on $\mathbb{T}^d$, for certain parameter values, the free and minus fuzzy Potts measures dominate different product measures

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1802-1824

Publication Date: November 14, 2010

DOI: 10.1214/EJP.v15-820

References

  1. Aizenman, M; Chayes, J; Chayes, L; Newman, C. Discontinuity of the magnetization in one-dimensional 1/|x-y|^2 Ising and Potts models, J. Statist. Phys. 50 (1988), 1--40.
  2. Georgii, Hans-Otto. Gibbs measures and phase transitions. de Gruyter Studies in Mathematics, 9. Walter de Gruyter & Co., Berlin, 1988. xiv+525 pp. ISBN: 0-89925-462-4 MR0956646 (89k:82010)
  3. Georgii, Hans-Otto; Häggström, Olle; Maes, Christian. The random geometry of equilibrium phases. Phase transitions and critical phenomena, Vol. 18, 1--142, Phase Transit. Crit. Phenom., 18, Academic Press, San Diego, CA, 2001. MR2014387 (2004h:82022)
  4. Grimmett, Geoffrey. The random-cluster model. Springer, 2006.
  5. Häggström, O. Random-cluster representations in the study of phase transitions. Markov Process. Related Fields 4 (1998), no. 3, 275--321. MR1670023 (2000e:60182)
  6. Häggström, Olle. Positive correlations in the fuzzy Potts model. Ann. Appl. Probab. 9 (1999), no. 4, 1149--1159. MR1728557 (2001b:60118)
  7. Häggström, Olle. Markov random fields and percolation on general graphs. Adv. in Appl. Probab. 32 (2000), no. 1, 39--66. MR1765172 (2001g:60246)
  8. Häggström, Olle. Is the fuzzy Potts model Gibbsian? Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 5, 891--917. MR1997217 (2005f:82049)
  9. Häggström, Olle; Külske, Christof. Gibbs properties of the fuzzy Potts model on trees and in mean field. Markov Processes and Related Fields 10 (2004), 477--506.
  10. Kahn, Jeff; Weininger, Nicholas. Positive association in the fractional fuzzy Potts model. Ann. Probab. 35 (2007), no. 6, 2038--2043. MR2353381 (2008k:60245)
  11. Künsch, H; Geman, S; Kehagias, A. Hidden Markov random fields. Ann. Appl. Probab. 5 (1995), 577--602.
  12. Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4 MR0776231 (86e:60089)
  13. Liggett, Thomas M.; Steif, Jeffrey E. Stochastic domination: the contact process, Ising models and FKG measures. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006), no. 2, 223--243. MR2199800 (2007i:60131)
  14. Maes, Christian; Vande Velde, Koen. The fuzzy Potts model. J. Phys. A 28 (1995), no. 15, 4261--4270. MR1351929 (96i:82022)
  15. Schonmann, Roberto H.; Tanaka, Nelson I. Lack of monotonicity in ferromagnetic Ising model phase diagrams. Ann. Appl. Probab. 8 (1998), no. 1, 234--245. MR1620366 (99b:60171)


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.