Martingale Property and Capacity under G-Framework

Jing Xu (School of Economics and Business Administration)
Bo Zhang (School of Statistics Renmin University of China)

Abstract


The main purpose of this article is to study the symmetric martingale property and capacity defined by G-expectation introduced by Peng (cf. http://arxiv.org/PS_cache/math/pdf/0601/0601035v2.pdf) in 2006. We show that the G-capacity can not be dynamic, and also demonstrate the relationship between symmetric G-martingale and the martingale under linear expectation. Based on these results and path-wise analysis, we obtain the martingale characterization theorem for G Brownian motion without Markovian assumption. This theorem covers the Levy's martingale characterization theorem for Brownian motion, and it also gives a different method to prove Levy's theorem.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 2041-2068

Publication Date: December 3, 2010

DOI: 10.1214/EJP.v15-832

References

  1. Avellaneda, M., Levy,A. and Paras, A. Pricing and Hedging Derivatives Securities in Markets with Uncertain Volatilities. Appl. Math. Finance 2, 73-88(1995).
  2. Black, F., and Scholes, M. The Pricing of Options and Corporate Liabilities. The Journal of Political Economy 81, 637-659(1973).
  3. Chen, Zengjing; Epstein, Larry. Ambiguity, risk, and asset returns in continuous time. Econometrica 70 (2002), no. 4, 1403--1443. MR1929974 (2003i:91052)
  4. Cheng, SH. Modern Probability. Peking Press, Beijing(2000).
  5. Choquet G. Theory of Capacities. Ann.Inst. Fourier 5,131-295(1955).
  6. Cox, J. and Ross, S. The Valuation of Options for Alternative Stochastic Processes. Journal of Financial Economics 3, 145-166(1976).
  7. Delbaen, Freddy. Coherent risk measures on general probability spaces. Advances in finance and stochastics, 1--37, Springer, Berlin, 2002. MR1929369
  8. Dempster, A. P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38 1967 325--339. MR0207001 (34 #6817)
  9. Denis, Laurent; Martini, Claude. A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16 (2006), no. 2, 827--852. MR2244434 (2007j:60100)
  10. Denis, L., Hu, MS., and Peng, S. Function spaces and capacity related to a sublinear expectation: application G Brownian Motion Paths. arXiv: 0802.1204v1 [math.PR] 9 Feb 2008.
  11. El Karoui, N.; Peng, S.; Quenez, M. C. Backward stochastic differential equations in finance. Math. Finance 7 (1997), no. 1, 1--71. MR1434407 (98d:90030)
  12. Pap, Endre. Regular null-additive monotone set functions. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 25 (1995), no. 2, 93--101. MR1413960 (97j:28046)
  13. Jakobsen, Espen R.; Karlsen, Kenneth H. Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations. J. Differential Equations 183 (2002), no. 2, 497--525. MR1919788 (2003i:35135)
  14. Harrison, J. Michael; Kreps, David M. Martingales and arbitrage in multiperiod securities markets. J. Econom. Theory 20 (1979), no. 3, 381--408. MR0540823 (80h:90025)
  15. Hull, J.C., and White, A. The Pricing of Options with Stochastic Volatility, Journal of Finance 42, 211-300(1987).
  16. Stein, James D., Jr. Uniform absolute continuity in spaces of set functions. Proc. Amer. Math. Soc. 51 (1975), 137--140. MR0440012 (55 #12893)
  17. Krylov, N. V. Controlled diffusion processes.Translated from the Russian by A. B. Aries.Applications of Mathematics, 14. Springer-Verlag, New York-Berlin, 1980. xii+308 pp. ISBN: 0-387-90461-1 MR0601776 (82a:60062)
  18. Li, Jun. Order continuous of monotone set function and convergence of measurable functions sequence. Appl. Math. Comput. 135 (2003), no. 2-3, 211--218. MR1937247 (2003j:28041)
  19. Lyons, T.J. Uncertain Volatility and the Risk-Free Synthesis of Derivatives. Appl. Mathe. Finance 2, 117-133(1995).
  20. Merton, Robert C. Theory of rational option pricing. Bell J. Econom. and Management Sci. 4 (1973), 141--183. MR0496534 (58 #15058)
  21. Mete Soner, H., Touzi Nizar, and Zhang JF. Martigale Representation Theorem for the G Expectation. arXiv:1001.3802v1[math.PR] 21 Jan 2010.
  22. Murofushi, T., Uchino, K., and Asahina, S. Conditions for Egoroff's Theorem in Non-Additive Measure Theory, Fuzzy Sets and Systems, Vol.146, 135-146(2004). MR{2074207}
  23. Peng, Shige. $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type. Stochastic analysis and applications, 541--567, Abel Symp., 2, Springer, Berlin, 2007. MR2397805 (2009c:60220)
  24. Peng, Shige. $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type. Stochastic analysis and applications, 541--567, Abel Symp., 2, Springer, Berlin, 2007. MR2397805 (2009c:60220)
  25. Peng, S. A New Central Limit Theorem under Sublinear Expectations (2008). http://arxiv.org /PS_cache/arxiv/pdf/0803/0803.2656v1.pdf
  26. Song, JJ. On a Generalization of Convergence Theorems in Non-Additive Measure Theory, Chiba University Doctor's Theisis. 2005.
  27. Stein, E., and Stein, J. Stock Price Distributions with Stochastic Volatility: An Analytic Approach. Review of Financial Studies 4, 727-752(1991).
  28. Wang, Lihe. On the regularity theory of fully nonlinear parabolic equations. II. Comm. Pure Appl. Math. 45 (1992), no. 2, 141--178. MR1139064 (92m:35127)
  29. Xu, Jing; Zhang, Bo. Martingale characterization of $G$-Brownian motion. Stochastic Process. Appl. 119 (2009), no. 1, 232--248. MR2485026 (2010c:60240)
  30. Yan, JA., Peng, S., et al. Topics on Stochastic Analysis. Science Press, Beijing, 1997.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.