Asymptotic Analysis for Stochastic Volatility: Edgeworth Expansion
Abstract
The validity of an approximation formula for European option prices under a general stochastic volatility model is proved in the light of the Edgeworth expansion for ergodic diffusions. The asymptotic expansion is around the Black-Scholes price and is uniform in bounded payoff functions. The result provides a validation of an existing singular perturbation expansion formula for the fast mean reverting stochastic volatility model.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 764-791
Publication Date: April 18, 2011
DOI: 10.1214/EJP.v16-879
References
- AlÃs, E. A generalization of the Hull and White formula with applications to option pricing approximation. Finance Stoch. 10 (2006), no. 3, 353ñ365. Math. Review 2007k:60197
- Andersen, T. G.; Bollerslev, T.; Diebold, F. X.; Labys, P. The distribution of realized exchange rate volatility. J. Amer. Statist. Assoc. 96 (2001), no. 453, 42ñ55. Math. Review number not available.
- Bhattacharya, R. N.; Ranga Rao, R. Normal approximation and asymptotic expansions. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York-London-Sydney, 1976. Math. Review 436272
- Borisov, I. S. Estimation of the rate of convergence of distributions of additive functionals of a sequence of sums of independent random variables. Sibirsk. Mat. é. 19 (1978), no. 3, 530ñ546, 716. Math. Review 0501274
- Conlon, J. G.; Sullivan, M. G. Convergence to Black-Scholes for ergodic volatility models. European J. Appl. Math. 16 (2005), no. 3, 385ñ409. Math. Review 2006g:91082
- Feller, W. An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley & Sons, Inc., New York-London-Sydney 1971. Math. Review 270403
- Fitzsimmons, P. J.; Pitman, J. Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process. Stochastic Process. Appl. 79> (1999), no. 1, 117ñ134. Math. Review 2000a:60136
- Fouque, J. P.; Papanicolaou, G.; Sircar, K. R. Derivatives in financial markets with stochastic volatility. Cambridge University Press, Cambridge, 2000. Math. Review 2002g:91082
- Fouque, J. P.; Papanicolaou, G.; Sircar, R.; Solna, K. Singular perturbations in option pricing. SIAM J. Appl. Math. 63 (2003), no. 5, 1648ñ1665. Math. Review 2004g:91070
- Fouque, J. P.; Sircar, R.; Solna, K. Stochastic Volatility Effects on Defaultable Bonds. Applied Mathematical Finance, 13 (2006), no. 3, 215-244. Math. Review number not available.
- Fukasawa, M. Edgeworth expansion for ergodic diffusions. Probab. Theory Related Fields 142 (2008), no. 1-2, 1ñ20. Math. Review 2010a:62043
- Fukasawa, M. Asymptotic Analysis for stochastic volatility: martingale expansion. Finance Stoch. forthcoming.
- Gatheral, J. The Volatility Surface: A PractitionerÃs Guide. John Wiley and Sons: Hoboken, NJ. 2006. Math. Review number not available.
- Hall, P. The bootstrap and Edgeworth expansion. Springer Series in Statistics. Springer-Verlag, New York, 1992. Math. Review 93h:62029
- Khasminskii, R. Z.; Yin, G. Uniform asymptotic expansions for pricing European options. Appl. Math. Optim. 52 (2005), no. 3, 279ñ296. Math. Review 2006f:91099
- MalinovskiÄ, V. K. Limit theorems for Harris Markov chains. I. Teor. Veroyatnost. i Primenen. 31 (1986), no. 2, 315ñ332. Math. Review 88b:60157
- Petrov, V. V. Sums of independent random variables, Springer-Verlag, New York-Heidelberg. 1975. Math. Review 322927
- Skorokhod, A. V. Asymptotic methods in the theory of stochastic differential equations. Translations of Mathematical Monographs, 78. American Mathematical Society, Providence, RI. 1989. Math. Review 913305
- Veretennikov, A. Y. On lower bounds for mixing coefficients of Markov diffusions. From stochastic calculus to mathematical finance, 623ñ633, Springer, Berlin, 2006. Math. Review 2007f:60069
- Yoshida, N. Malliavin calculus and asymptotic expansion for martingales. Probab. Theory Related Fields 109 (1997), no. 3, 301ñ342. Math. Review 99k:60068
- Yoshida, N. Partial mixing and Edgeworth expansion. Probab. Theory Related Fields 129 (2004), no. 4, 559ñ624. Math. Review 2005g:62035

This work is licensed under a Creative Commons Attribution 3.0 License.