※このページに掲載している原稿は 速報ファイル です。
No.1878
幾何学的関数論に関連した種々の不等式
Some inequalities concerned with the geometric function theory
RIMS 共同研究報告集
 
2013/05/22〜2013/05/24
尾和 重義
Shigeyoshi Owa
 
目 次
 
1. RADIUS PROBLEMS FOR INVERSE FUNCTIONS CONCERNING WITH BI-UNIVALENT FUNCTIONS (Some inequalities concerned with the geometric function theory)---1
    ISTANBUL KULTUR UNIVERSITY, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE / 近畿大学理工学部   DUMAN EMEL YAVUZ / 尾和 重義 (DUMAN,EMEL YAVUZ / OWA,SHIGEYOSHI)
 
2. Extensions for certain subordination relations (Some inequalities concerned with the geometric function theory)-------------------7
    近畿大学理工学部   黒木 和雄 (Kuroki,Kazuo)
 
3. On N-Fractional Calculus of the Function $((z-b)^2-c)^{\frac{1}{3}}$ (Some inequalities concerned with the geometric function theory) ---17
    関西医科大学   都田 艶子 (Miyakoda,Tsuyako)
 
4. The Solutions to The Homogeneous Bessel Equations by Means of The N-Fractional Calculus : The Calculus in The 21th Century : Again (Some inequalities concerned with the geometric function theory)---30
    デカルト出版   西本 勝之 (Nishimoto,Katsuyuki)
 
5. N-Fractional Calculus of the Function $f(z)=log((z-b)^3-c)$ and Identities (Some inequalities concerned with the geometric function theory)---49
    デカルト出版 / Department of Applied Mathematics, Chung Yuan Christian University / Department of Mathematical Engineering, Taoyuan Innovation Institute of Technology   西本 勝之 / Lin Shy-Der / Wang Pin-Yu (Nishimoto,Katsuyuki / Lin,Shy-Der / Wang,Pin-Yu)
 
6. Notes on a certain class of analytic functions (Some inequalities concerned with the geometric function theory)------------------67
    摂南大学理工学部 / 近畿大学理工学部   西脇 純一 / 尾和 重義 (Nishiwaki,Junichi / Owa,Shigeyoshi)
 
7. ON SOME DIFFERENTIAL SUBORDINATIONS (Some inequalities concerned with the geometric function theory)-----------------------------74
    群馬大学 / DEPARTMENT OF MATHEMATICS, RZESZOW UNIVERSITY OF TECHNOLOGY   布川 護 / SOKOL JANUSZ (NUNOKAWA,MAMORU / SOKOL,JANUSZ)
 
8. ON FUNCTIONS STARLIKE IN ONE DIRECTION (Some inequalities concerned with the geometric function theory)--------------------------81
    群馬大学 / DEPARTMENT OF MATHEMATICS, RZESZOW UNIVERSITY OF TECHNOLOGY   布川 護 / SOKOL JANUSZ (NUNOKAWA,MAMORU / SOKOL,JANUSZ)
 
9. Univalence and starlikeness of a function defined by convolution of analytic function and hypergeometric function $_3F_2$ (Some inequalities concerned with the geometric function theory)---85
    近畿大学理工学部 / 近畿大学理工学部 / 近畿大学理工学部   下田 穣 / 中村 弥生 / 尾和 重義 (Shimoda,Yutaka / Nakamura,Yayoi / Owa,Shigeyoshi)
 
10. Embedding $\alpha$-convex functions in the class $\mathcal{U}$ (Some inequalities concerned with the geometric function theory)---94
    Ss. Cyril and Methodius University in Skopje, Faculty of Mechanical Engineering   Tuneski,Nikola
 
11. THE SHARP GROWTH ESTIMATE FOR $\mathcal{U}(\lambda)$ (Some inequalities concerned with the geometric function theory)----------100
    山口大学工学部   柳原 宏 (Yanagihara,Hiroshi)