RIMS Kôkyûroku
No.1904
ŒJ‚肱‚ÝŒQ‚̐”—‰ÈŠw‚ł̉ž—p
Applications of Renormalization Group Methods in Mathematical Sciences
RIMS Œ¤‹†W‰ï•ñW
@
2013/09/11`2013/09/13
ˆÉ“Œ@Œbˆê
Keiichi R. Ito
@
–ځ@ŽŸ
@
1. Weak Solution of Renormalization Group Equation (Applications of Renormalization Group Methods in Mathematical Sciences)----------1
@@@@‹à‘ò‘åŠwŽ©‘R‰ÈŠwŒ¤‹†‰È / ‹à‘ò‘åŠwŽ©‘R‰ÈŠwŒ¤‹†‰È / ‹à‘ò‘åŠwŽ©‘R‰ÈŠwŒ¤‹†‰È@@@Â–Ø Œ’ˆê / ŒF–{ ^ˆê˜Y / ²“¡ ‘å•ã@(Aoki,Ken-Ichi / Kumamoto,Shin-Ichiro / Sato,Daisuke)
@
2. Domain Wall Renormalization Group Approach to the 2d Ising Model with External Magnetic Field (Applications of Renormalization Group Methods in Mathematical Sciences)---13
@@@@‹à‘ò‘åŠwŽ©‘R‰ÈŠwŒ¤‹†‰È / ‹à‘ò‘åŠwŽ©‘R‰ÈŠwŒ¤‹†‰È / •ÄŽqH‹Æ‚“™ê–åŠwZ / ‹à‘ò‘åŠwŽ©‘R‰ÈŠwŒ¤‹†‰È / ‹à‘ò‘åŠwŽ©‘R‰ÈŠwŒ¤‹†‰È@@@Â–Ø Œ’ˆê / “¡ˆä NO / ¬—Ñ ‹ÊÂ / ²“¡ ‘å•ã / •x“c —m@(Aoki,Ken-Ichi / Fujii,Yasuhiro / Kobayashi,Tamao / Sato,Daisuke / Tomita,Hiroshi)
@
3. Existence of IIC measure for 2D Ising percolation at high temperatures (Applications of Renormalization Group Methods in Mathematical Sciences)---31
@@@@_ŒË‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È / _ŒË‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È / ‰¡•l‘—§‘åŠw‘åŠw‰@HŠwŒ¤‹†‰@ / ƒRƒƒ‰ƒh‘åŠw@@@”óŒû •Û¬ / –؉º ˆê¬ / ’|‹ ³“o / Zhang Yu@(Higuchi,Yasunari / Kinoshita,Kazunari / Takei,Masato / Zhang,Yu)
@
4. Super-Brownian motion in random environment and its duality (Applications of Renormalization Group Methods in Mathematical Sciences)---35
@@@@’}”g‘åŠw”—•¨Ž¿‰ÈŠwŒ¤‹†‰È@@@’†“‡ ½@(Nakashima,Makoto)
@
5. Monotonicity of the Polaron Energy (Applications of Renormalization Group Methods in Mathematical Sciences)----------------------46
@@@@–kŠC“¹‘åŠw—Šw•””Šw‰È@@@‹{”ö ’‰G @(Miyao,Tadahiro)
@
6. Stochastic UV renormalization of a scalar model with a non-local kinetic term (Applications of Renormalization Group Methods in Mathematical Sciences)---54
@@@@‹ãB‘åŠw”—ŠwŒ¤‹†‰@@@@œA“‡ •¶¶@(Hiroshima,Fumio)
@
7. Construction of the $\Phi^4_4$ quantum field theory on noncommutative Moyal space (Applications of Renormalization Group Methods in Mathematical Sciences)---67
@@@@Fakultat fur Physik, Universitat Wien / Mathematisches Institut der Westfalischen Wilhelms-Universitat@@@GROSSE,Harald / WULKENHAAR,Raimar
@
8. Universality in Random Matrix Theory (Applications of Renormalization Group Methods in Mathematical Sciences)-------------------105
@@@@Department of Mathematical Sciences, KAIST@@@LEE,JI OON
@
9. Wigner matrices with random potential (Applications of Renormalization Group Methods in Mathematical Sciences)------------------123
@@@@Department of Mathematical Sciences, KAIST@@@LEE,JI OON
@
10. The Shannon-McMillan Theorem for AF $C^*$-systems (Applications of Renormalization Group Methods in Mathematical Sciences)-----141
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@•û –FŽq@(Ogata,Yoshiko)
@
11. A $C^*$-algebraic approach to supersymmetry (Applications of Renormalization Group Methods in Mathematical Sciences)-----------143
@@@@ŽÅ‰YH‹Æ‘åŠwHŠw•”@@@Žç‰® ‘n@(Moriya,Hajime)
@
12. Absence of Phase Transitions in 2D $O(N)$ Spin Models and Renormalization Group Analysis (Applications of Renormalization Group Methods in Mathematical Sciences)---147
@@@@Û“ì‘åŠw—HŠw•”@@@ˆÉ“Œ Œbˆê@(Ito,Keiichi R.)
@
13. Wegner estimate for Gaussian random magnetic fields (Applications of Renormalization Group Methods in Mathematical Sciences)---160
@@@@‹ž“s‘åŠwlŠÔEŠÂ‹«ŠwŒ¤‹†‰È@@@ã–Ø ’¼³@(Ueki,Naomasa)
@
14. Hida distribution construction of $P(\phi)_d$ $(d\ge4)$ indefinite metric quantum field models without BPHZ renormalization (Applications of Renormalization Group Methods in Mathematical Sciences)---161
@@@@Inst. Angewandte Mathematik, Universitat Bonn / “Œ‹ž“sŽs‘åŠw‹¤’Ê‹³ˆç•”@@@ALBEVERIO Sergio / ‹g“c –«@(ALBEVERIO,Sergio / YOSHIDA,Minoru W.)
@
15. A Calculable Model for a Cavity and an Atomic Beam (Applications of Renormalization Group Methods in Mathematical Sciences)----175
@@@@‹à‘ò‘åŠwŽ©‘R‰ÈŠwŒ¤‹†‰È@@@“c‘º ”ŽŽu@(Tamura,Hiroshi)
@
16. BINDING CONDITION OF THE MANY BODY SEMI-RELATIVISTIC PAULI-FIERZ MODEL (Applications of Renormalization Group Methods in Mathematical Sciences)---189
@@@@MB‘åŠw—Šw•”@@@²X–Ø Ši@(SASAKI,ITARU)
@