In order to simplify the notation and taking into account that most powerful results have been derived for scalar conservation laws in one spatial dimension, we will restrict ourselves to the initial value problem given by the equation
with the initial condition In hydrodynamic codes based on finite difference or finite volume techniques, Equation (92) is solved on
a discrete numerical grid
with
Convergence under grid refinement implies that the global error , defined as
The Lax–Wendroff theorem cited above does not establish whether the method converges. To guarantee
convergence, some form of stability is required, as for linear problems (Lax equivalence theorem [244]). In
this context the notion of total-variation stability has proven to be very successful, although powerful
results have only been obtained for scalar conservation laws. The total variation of a solution at ,
TV(
), is defined as
Modern research has focussed on the development of high-order, accurate methods in conservation form,
which satisfy the condition of TV-stability. The conservation form is ensured by starting with the integral
version of the partial differential equations in conservation form (finite volume methods). Integrating the
PDE over a finite spacetime domain and comparing with Equation (97
), one
recognizes that the numerical flux function
is an approximation to the time-averaged flux across
the interface, i.e.,
High order of accuracy is usually achieved by using conservative monotonic polynomial functions to
interpolate the approximate solution within zones. The idea is to produce more accurate left and right
states for the Riemann problem by substituting the mean values (that give only first-order accuracy)
by better representations of the true flow near the interfaces, let’s say
,
. The
FCT algorithm [33] constitutes an alternative procedure where higher accuracy is obtained by
adding an anti-diffusive flux term to the first-order numerical flux. The interpolation algorithms
have to preserve the TV-stability of the scheme. This is usually achieved by using monotonic
functions which lead to the decrease of the total variation (total-variation-diminishing schemes,
TVD [120]). High-order TVD schemes were first constructed by van Leer [282], who obtained
second-order accuracy by using monotonic piecewise linear slopes for cell reconstruction. The
piecewise parabolic method (PPM) [60] provides even higher accuracy. The TVD property implies
TV-stability, but can be too restrictive. In fact, TVD methods degenerate to first-order accuracy at
extreme points [216]. Hence, other reconstruction alternatives have been developed where some
growth of the total variation is allowed. This is the case for the total-variation-bounded (TVB)
schemes [259], the essentially non-oscillatory (ENO) schemes [121] and the piecewise-hyperbolic method
(PHM) [175].
There are several strategies to extend HRSC methods to more than one spatial dimension. A
brief summary of these strategies can be found in LeVeque’s book [157] (see also [160]). The
simplest strategy is dimensional splitting, where the differential operators along the spatial
directions are applied in successive steps (fractional step methods). Second order in time is
achieved when one permutes cyclically the order in which the directional (i.e., 1D) operators
are applied (Strang splitting [270]). In semi-discrete methods (method of lines), the process
of discretization proceeds in two stages. First only operators involving spatial derivatives are
discretized, leaving the problem continuous in time. This gives rise to a system of ordinary
differential equations (in time) which can be integrated by any ODE solver. In the method of lines
approach, the numerical fluxes across cell interfaces are computed in all two or three spatial
directions, before they are simultaneously applied to advance the equations. Particularly of interest
are TVD Runge–Kutta time discretization algorithms [260, 261], which preserve the TVD
properties of the algorithm at every substep. A third approach relies on unsplit methods, where the
different spatial directions are also advanced simultaneously as in the semi-discrete methods.
However, the extension of unsplit methods to second-order accuracy requires incorporating
not only slopes in the normal direction (as in one-dimensional or split algorithms), but also
cross-derivatives arising from the multi-dimensional Taylor series expansion. Good examples of genuinely
multi-dimensional upwind methods for hyperbolic conservation laws (using slightly different
strategies) are those described in [58, 158
]. In [58] the algorithm proceeds in two steps. First,
interface values are interpolated, using information from all orthogonal directions. Secondly,
the Riemann problems defined by these interface values are solved. The algorithm proposed
in [158] first solves the Riemann problem, and then distributes the information to the appropriate
directions.
http://www.livingreviews.org/lrr-2003-7 |
© Max Planck Society and the author(s)
Problems/comments to |