This article reviews the achievements described in the preceding paragraph; it is concerned with
the motion of a point scalar charge , a point electric charge
, and a point mass
in
a specified background spacetime with metric
. These particles carry with them fields
that behave as outgoing radiation in the wave zone. The radiation removes energy and angular
momentum from the particle, which then undergoes a radiation reaction – its world line cannot
be simply a geodesic of the background spacetime. The particle’s motion is affected by the
near-zone field which acts directly on the particle and produces a self-force. In curved spacetime the
self-force contains a radiation-reaction component that is directly associated with dissipative
effects, but it contains also a conservative component that is not associated with energy or
angular-momentum transport. The self-force is proportional to
in the case of a scalar charge,
proportional to
in the case of an electric charge, and proportional to
in the case of a point
mass.
In this review I derive the equations that govern the motion of a point particle in a curved background spacetime. The presentation is entirely self-contained, and all relevant materials are developed ab initio. The reader, however, is assumed to have a solid grasp of differential geometry and a deep understanding of general relativity. The reader is also assumed to have unlimited stamina, for the road to the equations of motion is a long one. One must first assimilate the basic theory of bitensors (Section 2), then apply the theory to construct convenient coordinate systems to chart a neighbourhood of the particle’s world line (Section 3). One must next formulate a theory of Green’s functions in curved spacetimes (Section 4), and finally calculate the scalar, electromagnetic, and gravitational fields near the world line and figure out how they should act on the particle (Section 5). The review is very long, but the payoff, I hope, will be commensurate.
In this introductory section I set the stage and present an impressionistic survey of what the review contains. This should help the reader get oriented and acquainted with some of the ideas and some of the notation. Enjoy!
http://www.livingreviews.org/lrr-2004-6 |
© Max Planck Society
Problems/comments to |