The first evaluation of the electromagnetic self-force was carried out by DeWitt and DeWitt [41] for a
charge moving freely in a weakly-curved spacetime characterized by a Newtonian potential . (This
condition must be imposed globally, and requires the spacetime to contain a matter distribution.) In this
context the right-hand side of Equation (33
) reduces to the tail integral, since there is no external
force acting on the charge. They found the spatial components of the self-force to be given by
A similar expression was obtained by Pfenning and Poisson [46] for the case of a scalar charge. Here
whereThe force required to hold an electric charge in place in a Schwarzschild spacetime was computed, without approximations, by Smith and Will [54]. As measured by a free-falling observer momentarily at rest at the position of the charge, the total force is
and it is directed in the radial direction. Here, The intriguing phenomenon of mass loss by a scalar charge was studied by Burko, Harte, and
Poisson [15] in the simple context of a particle at rest in an expanding universe. For the special cases of a
de Sitter cosmology, or a spatially-flat matter-dominated universe, the retarded Green’s function could be
computed, and the action of the scalar field on the particle determined, without approximations. In
de Sitter spacetime the particle is found to radiate all of its rest mass into monopole scalar
waves. In the matter-dominated cosmology this happens only if the charge of the particle is
sufficiently large; for smaller charges the particle first loses a fraction of its mass, but then regains it
eventually.
In recent years a large effort has been devoted to the elaboration of a practical method to compute
the (scalar, electromagnetic, and gravitational) self-force in the Schwarzschild spacetime. This
work originated with Barack and Ori [7] and was pursued by Barack [2, 3] until it was put in
its definitive form by Barack, Mino, Nakano, Ori, and Sasaki [6
, 9
, 11
, 38
]. The idea is to
take advantage of the spherical symmetry of the Schwarzschild solution by decomposing the
retarded Green’s function
into spherical-harmonic modes which can be computed
individually. (To be concrete I refer here to the scalar case, but the method works just as well for
the electromagnetic and gravitational cases.) From the mode-decomposition of the Green’s
function one obtains a mode-decomposition of the field gradient
, and from this subtracts a
mode-decomposition of the singular field
, for which a local expression is known. This results in the
radiative field
decomposed into modes, and since this field is well behaved on the world
line, it can be directly evaluated at the position of the particle by summing over all modes.
(This sum converges because the radiative field is smooth; the mode sums for the retarded or
singular fields, on the other hand, do not converge.) An extension of this method to the Kerr
spacetime has recently been presented [44
, 34
, 10], and Mino [37] has devised a surprisingly simple
prescription to calculate the time-averaged evolution of a generic orbit around a Kerr black
hole.
The mode-sum method was applied to a number of different situations. Burko computed the
self-force acting on an electric charge in circular motion in flat spacetime [12], as well as on a
scalar and electric charge kept stationary in a Schwarzschild spacetime [14], in a spacetime
that contains a spherical matter shell (Burko, Liu, and Soren [17]), and in a Kerr spacetime
(Burko and Liu [16]). Burko also computed the scalar self-force acting on a particle in circular
motion around a Schwarzschild black hole [13], a calculation that was recently revisited by
Detweiler, Messaritaki, and Whiting [21]. Barack and Burko considered the case of a particle falling
radially into a Schwarzschild black hole, and evaluated the scalar self-force acting on such a
particle [4]; Lousto [33] and Barack and Lousto [5
], on the other hand, calculated the gravitational
self-force.
http://www.livingreviews.org/lrr-2004-6 |
© Max Planck Society
Problems/comments to |