List of Publications (Google Scholar Citations)
[61] K. Ishimoto, C. Moreau and J. Herault
Robust undulatory locomotion via neuromechanical adjustments in a dissipative medium
Journal of the Royal Society Interface, to appear.
[60] S. Unnikrishnan, R. L. Scott, E, Ogundele, M. A. Azad, K. Ishimoto, S. S. Suarez and C. K. Tung
Hybrid motility mechanism of sperm at viscoelastic fluid-solid interface
Scientific Reports, 14 (2024) 21841.
doi: 10.1038/s41598-024-72816-y
[59] K. Yasuda, K. Ishimoto and S. Komura
Statistical formulation of the Onsager-Machlup variational principle
Physical Review E, 110 (2024) 044104.
doi: 10.1103/PhysRevE.110.044104
[58] K. Ogawa and K. Ishimoto
Generalised Taylor dispersion of chiral microswimmers
Philosophical Transactions of the Royal Society A, to appear.
[57] L.-S. Lin, K. Yasuda, K. Ishimoto and S. Komura
Emergence of odd elasticity in a microswimmer using deep reinforcement learning
Physical Review Research, 6 (2024) 033016.
doi: 10.1103/PhysRevResearch.6.033016
[56] K. Ishimoto (in Japanese)
Continuum mechanics of living matter: A tale of tales in cellular swimming
Butsuri, 79 (2024) 486-494.
doi: 10.11316/butsuri.79.9_486
[55] Y. Hiruta and K. Ishimoto
Reciprocal microswimming in fluctuating and confined environments
Physical Review Research, 6 (2024) 013117.
doi: 10.1103/PhysRevResearch.6.013117
[54] M. P. Dalwadi, C. Moreau, E. A. Gaffney, B. J. Walker and K. Ishimoto
Generalised Jeffery's equations for rapidly spinning particles. Part 2: Helicoidal objects with chirality
Journal of Fluid Mechanics, 979 (2024) A2.
doi: 10.1017/jfm.2023.924
[53] M. P. Dalwadi, C. Moreau, E. A. Gaffney, K. Ishimoto and B. J. Walker
Generalised Jeffery's equations for rapidly spinning particles. Part 1: Spheroids
Journal of Fluid Mechanics, 979 (2024) A1.
doi: 10.1017/jfm.2023.923
[52] K. Ishimoto and M. Iima
Preface: Advances in the physics of biofluid locomotion
Journal of the Physical Society of Japan, 92(12) (2023). (pdf)
Featured in JPS Hot Topics “Exploring recent advances in the physics of biofluid locomotion”
[51] K. Ishimoto, C. Moreau and K. Yasuda
Odd elastohydrodynamics: Non-reciprocal living material in a viscous fluid
PRX Life, 1 (2023) 023002.
Featured in New Scientist “Sperm caught breaking Newton's third law of motion”
Selected as an Invited Talk in APS March Meeting 2024
[50] A. Kobayashi, K. Yasuda, K. Ishimoto, L.-S. Lin, I. Sou, Y. Hosaka and S. Komura
Odd elasticity of a catalytic micromachine
Journal of the Physical Society of Japan, 92 (2023) 074801.
[49] K. Ishimoto
Jeffery's orbits and microswimmers in flows: A theoretical review
Journal of the Physical Society of Japan, 92 (2023) 062001.
Featured in JPS Hot Topics “Microswimmer hydrodynamics through the lens of Jeffery's orbits”
[48] K. Ishimoto, E. A. Gaffney and D. J. Smith
Squirmer hydrodynamics near a periodic surface topography
Frontiers in Cell and Developmental Biology, 11 (2023) 1123446.
doi: 10.3389/fcell.2023.1123446
[47] B. J. Walker, K. Ishimoto and E. A. Gaffney
Systematic parameterization for minimal models of microswimming
Physical Review Fluids, 8 (2023) 034102.
doi: 10.1103/PhysRevFluids.8.034102
[46] B. J. Walker, K. Ishimoto and E. A. Gaffney
A hydrodynamic slender-body theory for local rotation at zero Reynolds number
Physical Review Fluids, 8 (2023) 034101.
doi: 10.1103/PhysRevFluids.8.034101
[45] L.-S. Lin, K. Yasuda, K. Ishimoto, Y. Hosaka and S. Komura
Onsager's variational principle for nonreciprocal system with odd elasticity
Journal of the Physical Society of Japan, 92 (2023) 033001.
[44] K. Yasuda and K. Ishimoto
The most probable path of an active Brownian particle
Physical Review E, 106 (2022) 064120.
doi: 10.1103/PhysRevE.106.064120
[43] K. Ishimoto
A multi-scale numerical simulation of quasi-two-dimensional bacterial turbulence using a regularized Stokeslet representation
Springer Proceedings in Mathematics & Statistics, 429 (2023) 215-226.
doi: 10.1007/978-3-031-35871-5_11
[42] T. Ayukawa, M. Akiyama, Y. Hozumi, K. Ishimoto, J. Sasaki, H. Senoo, T. Sasaki and M. Yamazaki
Tissue flow regulates planar cell polarity independently of the Frizzled core pathway
Cell Reports, 40 (2022) 111388.
doi: 10.1016/j.celrep.2022.111388
[41] K. Yasuda, K. Ishimoto, A. Kobayashi, L.-S. Lin, I. Sou, Y. Hosaka and S. Komura
Time-correlation functions for odd Langevin systems
The Journal of Chemical Physics, 157 (2022) 095101.
doi: 10.1063/5.0095969
[40] B. J. Walker, K. Ishimoto, C. Moreau, E. A. Gaffney and M. P. Dalwadi
Emergent rheotaxis of shape-changing swimmers in Poiseuille flow
Journal of Fluid Mechanics, 944 (2022) R2.
doi: 10.1017/jfm.2022.474
Featured in Focus on Fluids ”When do shape changers swim upstream?”
[39] K. Ishimoto, C. Moreau and K. Yasuda
Self-organized swimming with odd elasticity
Physical Review E, 105 (2022) 064603.
doi: 10.1103/PhysRevE.105.064603
Featured in EurekAlert! “Never too odd to learn how to swim”
Featured in Science Japan “Theory of self-organized swimming with odd elasticity discovered”
Featured in Nagare: Journal of Japan Society of Fluid Mechanics, 41 (2022) 411-414.
[38] B. J. Walker, K. Ishimoto, E. A. Gaffney and C. Moreau
The control of particles in the Stokes limit
Journal of Fluid Mechanics, 942 (2022) A1.
doi: 10.1017/jfm.2022.253
[37] E. A. Gaffney, M. P. Dalwadi, C. Moreau, K. Ishimoto and B. J. Walker
Canonical orbits for rapidly deforming planar microswimmers in shear flow
Physical Review Fluids, 7 (2022) L022101.
doi: 10.1103/PhysRevFluids.7.L022101
[36] B. J. Walker, K. Ishimoto, E. A. Gaffney, C. Moreau and M. P. Dalwadi
The effects of rapid yawing on simple swimmer models and planar Jeffery's orbits
Physical Review Fluids, 7 (2022) 023101.
doi: 10.1103/PhysRevFluids.7.023101
[35] C. Moreau and K. Ishimoto
Driving a microswimmer with wall-induced flow
Micromachines, 12 (2021) 1025.
doi: 10.3390/mi12091025
[34] C. Moreau, K. Ishimoto, E. A. Gaffney and B. J. Walker
Control and controllability of microswimmers by a shearing flow
Royal Society Open Science, 8 (2021) 211141.
doi: 10.1098/rsos.211141
[33] E. A. Gaffney, K. Ishimoto and B. J. Walker
Modelling motility: the mathematics of spermatozoa
Frontiers in Cell and Developmental Biology, 9 (2021) 710825.
doi: 10.3389/fcell.2021.710825
[32] B. J. Walker, K. Ishimoto and E. A. Gaffney
Efficient simulation of filament elastohydrodynamics in three dimensions
Physical Review Fluids, 5 (2020) 123103.
doi: 10.1103/PhysRevFluids.5.123103
Selected as Editors' Suggestion.
[31] K. Ishimoto, E. A. Gaffney and B. J. Walker
Regularized representation of bacterial hydrodynamics
Physical Review Fluids, 5 (2020) 093101.
doi: 10.1103/PhysRevFluids.5.093101
[30] K. Ishimoto
Jeffery orbits for an object with discrete rotational symmetry
Physics of Fluids, 32 (2020) 081904.
doi: 10.1063/5.0015056
[29] B. J. Walker, M. P. Curtis, K. Ishimoto and E. A. Gaffney
A regularised slender-body theory of non-uniform filaments
Journal of Fluid Mechanics, 899 (2020) A3.
doi: 10.1017/jfm.2020.434
[28] B. J. Walker, S. Phuyal, K. Ishimoto, C.-K. Tung and E. A. Gaffney
Computer-assisted beat-pattern analysis and the flagellar waveforms of bovine spermatozoa
Royal Society Open Science, 7 (2020) 200769.
doi: 10.1098/rsos.200769
[27] K. Ishimoto
Helicoidal particles and swimmers in a flow at low Reynolds number
Journal of Fluid Mechanics, 892 (2020) A11.
doi: 10.1017/jfm.2020.142
[26] B. J. Walker, K. Ishimoto, H. Gadêlha and E. A. Gaffney
Filament mechanics in a half-space via regularised Stokeslet segments
Journal of Fluid Mechanics, 879 (2019) 808-833.
doi: 10.1017/jfm.2019.723
[25] K. Ishimoto
Bacterial spinning top
Journal of Fluid Mechanics, 880 (2019) 620-652.
doi: 10.1017/jfm.2019.714
[24] B. J. Walker, K. Ishimoto and E. A. Gaffney
Pairwise hydrodynamic interactions of synchronized spermatozoa
Physical Review Fluids, 4 (2019) 093101.
doi: 10.1103/PhysRevFluids.4.093101
[23] K. Ishimoto and E. Lauga
The N-flagella problem: Elastohydrodynamic motility transition of multi-flagellated bacteria
Proceedings of the Royal Society A, 475 (2019) 20180690.
Featured in Nagare: Journal of Japan Society of Fluid Mechanics, 38 (2019) 407-410.
[22] B. J. Walker, K. Ishimoto and R. J. Wheeler
Automated identification of flagella from videomicroscopy via the medial axis transform
Scientific Reports, 9 (2019) 5015.
doi: 10.1038/S41598-019-41459-9
[21] B. J. Walker, K. Ishimoto, R. J. Wheeler and E. A. Gaffney
Response of monoflagellate pullers to a shearing flow: A simulation study of microswimmer guidance
Physical Review E, 98 (2018) 063111.
doi: 10.1103/PhysRevE.98.063111
[20] B. J. Walker, R. J. Wheeler, K. Ishimoto and E. A. Gaffney
Boundary behaviours of Leishmania mexicana: a hydrodynamic simulation study
Journal of Theoretical Biology, 462 (2019) 311-320.
doi: 10.1016/j.jtbi.2018.11.016
[19] K. Ishimoto and E. A. Gaffney
Hydrodynamic clustering of human sperm in viscoelastic fluids
Scientific Reports, 8 (2018) 15600.
doi: 10.1038/s41598-018-33584-8
[18] K. Ishimoto and E. A. Gaffney
An elastohydrodynamical simulation study of filament and spermatozoan swimming driven by internal couples
IMA Journal of Applied Mathematics, 83 (2018) 655-679.
[17] K. Ishimoto, H. Gadêlha, E. A. Gaffney, D. J. Smith and J. Kirkman-Brown
Human sperm swimming in a high viscous mucus analogue
Journal of Theoretical Biology, 446 (2018) 1-10.
doi: 10.1016/j.jtbi.2018.02.013
[16] K. Ishimoto
Guidance of microswimmers by wall and flow: Thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions
Physical Review E, 96 (2017) 043101.
doi: 10.1103/PhysRevE.96.043103
[15] K. Ishimoto and E. A. Gaffney
Boundary element methods for particles and microswimmers in a linear viscoelastic fluid
Journal of Fluid Mechanics, 831 (2017) 228-251.
doi: 10.1017/jfm.2017.636
[14] K. Ishimoto and D. G. Crowdy
Dynamics of a treadmilling microswimmer near a no-slip wall in simple shear
Journal of Fluid Mechanics, 821 (2017) 647-667.
doi: 10.1017/jfm.2017.220
[13] K. Ishimoto, H. Gadêlha, E. A. Gaffney, D. J. Smith and J. Kirkman-Brown
Coarse-graining the fluid flow around a human sperm
Physical Review Letters, 118 (2017) 124501.
doi: 10.1103/PhysRevLett.118.124501
Featured in BBC News “Sperm swimming technique 'all down to simple maths’”.
Featured in Daily Mail Online “The formula for sperm's success: 'Relatively simple' calculation could treat male infertility”
Featured in The Japan Times “Kyoto University professor does the math and finds that sperm swim to a beat”
[12] K. Ishimoto, M. Ikawa and M. Okabe
The mechanics clarifying counterclockwise rotation of most IVF eggs in mice
Scientific Reports, 7 (2017) 43456.
doi: 10.1038/srep43456
[11] K. Ishimoto and E. A. Gaffney
Mechanical tuning of mammalian sperm behaviour by hyperactivation, rheology and substrate adhesion: a numerical exploration
Journal of the Royal Society Interface, 13 (2016) 20160633.
[10] K. Ishimoto
Hydrodynamic evolution of sperm swimming: Optimal flagella by a genetic algorithm
Journal of Theoretical Biology, 399 (2016) 166-174.
doi: 10.1016/j.jtbi.2016.03.041
[9] K. Ishimoto, J. Cosson and E. A. Gaffney
A simulation study of sperm motility hydrodynamics near fish eggs and spheres
Journal of Theoretical Biology, 389 (2016) 187-197.
doi: 10.1016/j.jtbi.2015.10.013
[8] K. Ishimoto and E. A. Gaffney
Modelling spermatozoan swimming: its capabilities and limitations for contributing to the understanding of sperm guidance
in “Flagellar Mechanics and Sperm Guidance" (Ed. Jacky Cosson, Bentham Science Publishers) (2015) 315-348.
doi: 10.2174/97816810812811150101
[7] K. Ishimoto and E. A. Gaffney
Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis
Journal of the Royal Society Interface, 12 (2015) 20150172.
[6] K. Ishimoto and E. A. Gaffney
A study of spermatozoan swimming stability near a surface
Journal of Theoretical Biology, 360 (2014) 187-199.
doi: 10.1016/j.jtbi.2014.06.034
[5] K. Ishimoto and E. A. Gaffney
Swimming efficiency of spherical squirmers: Beyond the Lighthill theory
Physical Review E, 90 (2014) 012704.
doi: 10.1103/PhysRevE.90.012704
[4] K. Ishimoto and M. Yamada (in Japanese)
A coordinate-based proof of the scallop theorem (Special Review by RONBUN-Prize Award)
Nagare: Journal of Japan Society of Fluid Mechanics, 33 (2014) 237-240.
[3] K. Ishimoto and E. A. Gaffney
Squirmer dynamics near a boundary
Physical Review E, 88 (2013) 062702.
doi: 10.1103/PhysRevE.88.062702
[2] K. Ishimoto
A spherical squirming swimmer in unsteady Stokes flow
Journal of Fluid Mechanics, 723 (2013) 163-189.
doi: 10.1017/jfm.2013.131
[1] K. Ishimoto and M. Yamada
A coordinate-based proof of the scallop theorem
SIAM Journal on Applied Mathematics, 72 (2012) 1686-1694.
doi: 10.1137/110853297
Books
[2] K. Ishimoto (Japanese translation)
“Fluid Mechanics: A Very Short Introduction” by Eric Lauga (Iwanami Shoten, Publishers, 2023)
ISBN : 978-4000297233
[1] K. Ishimoto (Book in Japanese)
Microbial Fluid Mechanics: Exploring Motion, Shape, and Flow of Life (Saiensu-Sha, 2022)
ISBN : 978-4-7819-1559-3
MISC
[1] K. Ishimoto
Problems in microswimmer hydrodynamics
RIMS Kokyuroku, 2266 (2023) 131-140.
Media Interview
[4] “Sperm caught breaking Newton's third law of motion”
New Scientist, published online on 20 October 2023 (website)
Published in print, Issue 3462, p14 (28 October 2023) (website)
Selected as New Scientist's most popular story of the year (20 December 2023)
[3] “How do Sperm Swim?”
Fluid Mechanics Blog, Journal of Fluid Mechanics, published on 9 November 2020
[2] “Underwater Snakes, Gusty Flying, and Microswimmers”
Video Series of FYFD/Journal of Fluid Mechanics Collaboration, published online on 7 December 2018 (YouTube)
[1] “Kyoto University professor does the math and finds that sperm swim to a beat”
The Japan Times, published online on 24 March 2017 (p3, Newspaper on 25 March) (website)
Copyright (c) Kenta Ishimoto, All Rights Reserved.