No.1740
•Ο•ͺ–β‘θ‚Μ“WŠJ - Šτ‰½Šw“IŒω”z—¬‚Ζ—ΥŠE“_—˜_‚̐V’ͺ—¬
Progress in Variational Problems - New Trends of Geometric Gradient Flow and Critical Point Theory
RIMS Œ€‹†W‰ο•ρW
@
2010/06/07`2010/06/09
‚‹΄@‘Ύ
Futoshi Takahashi
@
–ځ@ŽŸ
@
1. Generalized minimal surfaces in Minkowski spaces (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---1
@@@@Dipartimento di Matematica Pura e Applicata, Universita di Padova@@@Novaga,Matteo
@
2. Gradient Flow for the Helfrich Variational Problem (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---11
@@@@ι‹Κ‘εŠw‘εŠw‰@—HŠwŒ€‹†‰Θ@@@’·ΰV šα”V@(Nagasawa,Takeyuki)
@
3. On evolving hypersurfaces with boundaries by mean curvature flow (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---24
@@@@ŽΊ—–H‹Ζ‘εŠw@@@‚β —ΗŽj@(Kohsaka,Yoshihito)
@
4. •½–Κ“ΰ‚Μ—lX‚ΘŒω”z—¬ : ƒ‚ƒfƒŠƒ“ƒO,‰ž—p,‚»‚΅‚Δ‘½ŠpŒ`”Ε (•Ο•ͺ–β‘θ‚Μ“WŠJ : Šτ‰½Šw“IŒω”z—¬‚Ζ—ΥŠE“_—˜_‚̐V’ͺ—¬)----------------------37
@@@@‹{θ‘εŠwHŠw•”@@@–ξθ ¬r@(Yazaki,Shigetoshi)
@
5. Existence and non-existence for nonlinear Schrodinger equations (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---52
@@@@‘εγŽs—§‘εŠw”ŠwŒ€‹†Š@@@²“‘ —m•½@(Sato,Yohei)
@
6. A NEW APPROACH TO LIOUVILLE THEOREMS FOR ELLIPTIC INEQUALITIES (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---64
@@@@DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF CHICAGO / UFR SEGMI, UNIVERSITE PARIS 10@@@ARMSTRONG,SCOTT N. / SIRAKOV,BOYAN
@
7. A new two-phase fluid problem with surface energy (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---74
@@@@–kŠC“Ή‘εŠw—ŠwŒ€‹†‰Θ@@@—˜ͺμ ‹gœA@(Tonegawa,Yoshihiro)
@
8. THE METHOD OF NEHARI MANIFOLD REVISITED (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---89
@@@@DEPARTMENT OF MATHEMATICS, STOCKHOLM UNIVERSITY@@@SZULKIN,ANDRZEJ
@
9. Dual variational approach to a quasilinear Schrodinger equation arising in plasma physics (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---103
@@@@Γ‰ͺ‘εŠwHŠw•” / ‹ž“sŽY‹Ζ‘εŠw—Šw•”@@@‘«’B T“ρ / “n•Σ ’B–η@(Adachi,Shinji / Watanabe,Tatsuya)
@
10. A note on the asymptotic formula for solutions of the linealized Gel'fand problem (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---120
@@@@‹{θ‘εŠwHŠw•”@@@‘ε’Λ _Žj@(Ohtsuka,Hiroshi)
@
11. On the attainability for the best constant of the Sobolev-Hardy type inequality (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---141
@@@@Taida Institute for Mathematical Sciences National Taiwan University / ‘εγŽs—§‘εŠw”ŠwŒ€‹†ŽΊ@@@Lin Chang-Shou / ˜a“co GŒυ@(Lin,Chang-Shou / Wadade,Hidemitsu)
@
12. A SEMILINEAR SCHRODINGER EQUATION WITH AHARONOV-BOHM MAGNETIC POTENTIAL (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---158
@@@@DEPARTMENT OF MATHEMATICS, STOCKHOLM UNIVERSITY@@@SZULKIN,ANDRZEJ
@
13. MULTIPLE SIGN-CHANGING SOLUTIONS FOR AN ASYMPTOTICALLY LINEAR ELLIPTIC PROBLEM (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)---167
@@@@‰‘•l‘—§‘εŠw‘εŠw‰@HŠwŒ€‹†‰@@@@‰–˜H ’ΌŽχ@(SHIOJI,NAOKI)
@