Transience and Non-explosion of Certain Stochastic Newtonian Systems
R.L. Schilling (University of Sussex)
A. E. Tyukov (University of Sussex)
Abstract
We give sufficient conditions for non-explosion and transience of the solution $(x_t, p_t)$ (in dimensions $\geq 3$) to a stochastic Newtonian system of the form $$ \begin{cases} dx_t= p_t \, dt , \\ dp_t= -\frac{\partial V(x_t) }{\partial x} \, dt - \frac{ \partial c(x_t) }{ \partial x} \, d\xi_t , \end{cases} $$ where $\{\xi_t\}_{t\geq 0}$ is a $d$-dimensional L\'evy process, $d\xi_t$ is an It\^o differential and $c\in C^2(\mathbb{R}^d,\mathbb{R}^d)$, $V\in C^2(\mathbb{R}^d,\mathbb{R})$ such that $V\geq 0$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-19
Publication Date: October 2, 2002
DOI: 10.1214/EJP.v7-118
References
- S. Albeverio, A.Klar, Longtime behaviour of stochastic Hamiltonian systems: The multidimensional case, Potential Anal. 12 (2000), 281-297. MR:2001e:37083
- J. Azema, M. Kaplan-Dulfo, D. Revuz, Recurrence fine des processus de Markov, Ann. Inst. Henri Poincare (Ser. B) 2 (1966), 185-220. MR:33 #8029
- S. Albeverio, A. Hilbert, V. N. Kolokoltsov, Transience for stochastically perturbed Newton systems, Stochastics and Stochastics Reports 60 (1997), 41-55. MR:98m:60086
- S. Albeverio, A. Hilbert, V.N. Kolokoltsov, Estimates Uniform in Time for the Transition Probability of Diffusions with Small Drift and for Stochastically Perturbed Newton Equations, J. Theor. Probab. 12 (1999), 293-300. MR:2001e:37083
- S. Albeverio, A. Hilbert, E. Zehnder, Hamiltonian systems with a stochastic force: nonlinear versus linear and a Girsanov formula, Stochastics and Stochastics Reports 39 (1992), 159-188. MR:95f:60062
- S. Albeverio, V. N. Kolokoltsov, The rate of escape for some Gaussian processes and the scattering theory for their small perturbations, Stochastic Processes and their Applications 67 (1997), 139-159. MR:98g:81027
- S.E. Ethier, T. Kurtz, Markov Processes: Characterization and Convergence,Wiley, Series in Probab. Math. Stat., New York 1986. MR:88a:60130
- M. Freidlin, Functional Integration and Partial Differential Equations, Princeton Univ. Press, Princeton, NJ 1985. MR:87g:60066
- I. Gradshteyn, I. Ryzhik, Tables of Integrals, Series, and Products. Corrected and Enlarged Edition, Academic Press, San Diego, CA 1992 (4th ed.). MR:83j:33001
- N. Jacob, Pseudo-differential operators and Markov processes, Akademie-Verlag, Mathematical Research 94, Berlin 1996. MR:97m:60109
- N. Jacob, R. L. Schilling, Levy-type processes and pseudo-differential operators, in: Barndorff-Nielsen, O. E. et al. (eds.) Levy processes: Theory and Applications, Birkhauser, Boston (2001), 139-167. MR:2002c:60077
- D. Khoshnevisan, Z. Shi, Chung's law for integrated Brownian motion, Trans. Am. Math. Soc. 350 (1998), 4253-4264. MR:98m:60056
- V. N. Kolokoltsov, Stochastic Hamilton-Jacobi-Bellman equation and stochastic Hamiltonian systems, J. Dyn. Control Syst. 2 (1996), 299-379. MR:97g:49036
- V. N. Kolokoltsov, Application of quasi-classical method to the investigation of the Belavkin quantum filtering equation, Mat. Zametki, 50 (1991), 153-156. (English transl.: Math. Notes 50 (1991), 1204-1206.) MR:1 155 570
- V. N. Kolokoltsov, A note on the long time asymptotics of the Brownian motion with applications to the theory of quantum measurement, Potential Anal. 7 (1997), 759-764. MR:99c:60179
- V. N. Kolokoltsov, The stochastic HJB Equation and WKB Method. In: J. Gunawardena (ed.), Idempotency, Cambridge Univ. Press, Cambridge 1998, 285-302. MR:1 608 347
- V. N. Kolokoltsov, Localisation and analytic properties of the simplest quantum filtering equation, Rev. Math. Phys. 10 (1998), 801-828. MR:99h:60131
- V. N. Kolokoltsov, Semiclassical Analysis for Diffusions and Stochastic Processes, Springer, Lecture Notes Math. 1724, Berlin 2000. MR:2001f:58073
- V. N. Kolokoltsov, R. L. Schilling, A. E. Tyukov, Estimates for multiple stochastic integrals and stochastic Hamilton-Jacobi equations, submitted.
- V. N. Kolokoltsov, A. E. Tyukov, The rate of escape of $alpha$-stable Ornstein-Uhlenbeck processes, Markov Process. Relat. Fields 7 (2001), 603-625. MR:1 893 144
- R. Z. Khasminski, Ergodic properties of recurrent diffusion processes and stabilization of the solutions to the Cauchy problem for parabolic equations, Theor. Probab. Appl. 5 (1960), 179-195.
- T. Kurtz, F. Marchetti, Averaging stochastically perturbed Hamiltonian systems. In: M. Cranston (ed.), Stochastic analysis, Proc. Summer Research Institute on Stochastic Analysis, Am. Math. Soc., Proc. Symp. Pure Math. 57, Providence, RI 1995, 93-114. MR:96f:60098
- L. Markus, A. Weerasinghe, Stochastic Oscillators, J. Differ. Equations 71 (1998), 288-314. MR:89c:34061
- L. Mehta, Random matrices (2nd ed.), Academic Press, Boston, MA 1991.
- E. Nelson, Dynamical theories of Brownian motion, Princton University Press, Mathematical Notes, Princeton, NJ 1967. MR:35 #5001
- K. Norita, The Smoluchowski-Kramers approximation for the stochastic Lienard equation with mean-field, Adv. Appl. Prob.23 (1991), 303-316.
- K. Norita, Asymptotic behavior of velocity process in the Smoluchowski-Kramers approximation for stochastic differential equations, Adv. Appl. Prob. 23 (1991), 317-326.
- S. Olla, S. Varadhan, Scaling limit for interacting Ornstein-Uhlenbeck processes, Commun. Math. Phys. 135 (1991), 355-378. MR:92h:60154
- S. Olla, S. Varadhan, H. Yau, Hydrodynamical limit for a Hamiltonian system with weak noise, Commun. Math. Phys. 155 (1993), 523-560. MR:94k:60158
- P. Protter, Stochastic Integration and Differential Equations, Springer, Appl. Math. 21, Berlin 1990. MR:91i:60148
- R.L. Schilling, Growth and Holder conditions for the sample paths of Feller processes, Probab. Theor. Relat. Fields 112 (1998), 565-611. MR:99m:60131
- A. Truman, H. Zhao, Stochastic Hamilton-Jacobi equation end related topics. In: A.M. Etheridge (ed.), Stochastic Partial Differential Equations, Cambridge Univ. Press, LMS Lecture Notes 276, Cambridge 1995, 287-303. MR:96k:60162
- A. Truman, H. Zhao, The stochastic Hamilton-Jacobi equation, stochastic heat equation and Schroedinger equations. In: A. Truman, I.M. Davis, K.D. Elworthy (eds.), Stochastic Analysis and Applications, World Scientific, Singapore 1996, 441-464. MR:98b:35230

This work is licensed under a Creative Commons Attribution 3.0 License.