Download this PDF file Fullscreen Fullscreen Off
References
- Athreya, K. B. and Ney, P. E. (1972), Branching Processes. Springer-Verlag. Math. Review 51:9242
- Billingsley, P. (1968), Convergence of Probability Measures. Wiley & Sons. Math. Review 38:1718
- Billingsley, P. (1986), Probability and Measure, 2nd ed. Wiley & Sons Math. Review 87f:60001
- Breiman, L. (1968), Probability. Addison-Wesley Publ. Co. Math. Review 37:4841
- Carmona, R. A. and Molchanov, S. A. (1994), Parabolic Anderson problem and intermittency. AMS Memoir 518, Amer. Math.Soc. Math. Review 94h:35080
- Chow, Y. S. and Teicher, H. (1988), Probability Theory, 2nd ed. Springer-Verlag. Math. Review 89e:60001
- Dawson, D. A. and Fleischmann, K. (2000), Catalytic and mutually catalytic branching. pp. 145-170 in Infinite Dimensional Stochastic Ananlysis (Ph. Cl'ement, F. den Hollander, J. van Neerven and B. de Pagter eds.) Koninklijke Nederlandse Akademdie van Wetenschappen. Math. Review 2002f:60164
- Derman, C. (1955), Some contributions to the theory of denumerable Markov chains. Trans. Amer. Math. Soc. 79 , 541-555. Math. Review 17:50c
- Gärtner, J. and den Hollander,F. (2003) , Intermittancy in a dynamic random medium. In preparation, Math. Review number not available.
- Gärtner, J., König, W. and Molchanov, S. A. (2000), Almost sure asymptotics for the continuous parabolic Anderson model, Probab. Theory Rel. Fields 118 , 547-573. Math. Review 2002i:60121
- Harris, T. E. (1963), The Theory of Branching Processes. Springer-Verlag. Math. Review 29:664
- Ikeda, N. Nagasawa, M. and Watanabe, S. (1968a), Branching Markov processes I J. Math. Kyoto Univ. 8 part I, 233-278. Math. Review 38:764
- Ikeda, N. Nagasawa, M. and Watanabe, S. (1968a), Branching Markov processes II J. Math. Kyoto Univ. 8, 365-410. Math. Review 38:6677
- Jagers, P. (1975), Branching Processes with Biological Applications. Wiley & Sons. Math. Review 58:7890
- Klenke, A. (2000a), Longtime behavior of stochastic processes with complex interactions {rm (especially Ch. 3)}. Habilitations thesis, University Erlangen. Math. Review number not available.
- Klenke, A. (2000b), A review on spatial catalytic branching, pp. 245-263 in Stochastic Models, (L. G. Gorostiza and B. G. Ivanoff eds.) CMS Conference proceedings, vol. 26, Amer. Math. Soc. Math. Review 2002a:60142
- Molchanov, S. A. (1994), Lectures on random media, pp. 242-411 in Ecole d'Et'e de Probabilit'es de St Flour XXII, (P. Bernard ed.) Lecture Notes in Math, vol. 1581, Springer-Verlag. Math. Review 95m:60165
- Savits, T. H. (1969), The explosion problem for branching Markov processes. Osaka J. Math. 6, 375-395. Math. Review 43:8137
- Shnerb, N. M., Louzoun, Y., Bettelheim, E. and Solomon, S. (2000) The importance of being discrete: Life always wins on the surface Proc. Nat. Acad. Sciences 97 , 10322-10324. Math. Review number not available.
- Shnerb, N. M., Bettelheim, E., Louzoun, Y., Agam, O. and Solomon, S. (2001), Adaptation of autocatalytic fluctuations to diffusive noise Phys. Rev. E 63 , 021103. Math. Review number not available.
- Spitzer, F. (1976), Principles of Random Walk, 2nd ed. Springer-Verlag. Math. Review 52:9383
- Strassen, V. (1965), The existence of probability measures with given marginals. Ann. Math. Statist. 36 , 423-439. Math. Review 31:1693
- Tanny, D. (1977), Limit theorems for branching processes in a random environment. Ann. Probab. 5 , 100-116. Math. Review 54:14135

This work is licensed under a Creative Commons Attribution 3.0 License.