Download this PDF file Fullscreen Fullscreen Off
References
- Ahlfors, L. (1973). Conformal Invariants. Topics in Geometric Function Theory. McGraw Hill Math. Review 50:10211
- Breiman, L. (1992) Probability. SIAM Math. Review 93d:60001
- Burdzy, K. and Lawler, G. (1990). Non-intersection exponents for random walk and Brownian motion. Part I: Existence and an invariance principle. Probab. Th. and Rel. Fields 84 393-410. Math. Review 91g:60096
- Burdzy, K. and Lawler, G. (1990). Non-intersection exponents for random walk and Brownian motion. Part II: Estimates and applications to a random fractal. Ann. Probab. 18 981--1009. Math. Review 91g:60097
- Burdzy, K., Lawler, G., and Polaski, T. (1989). On the critical exponent for random walk intersections. J. Stat. Phys. 56 1--12. Math. Review 91h:60073
- Cranston, M. and Mountford, T. (1991). An extension of a result of Burdzy and Lawler. Probab. Th. and Rel. Fields 89, 487-502. Math. Review 92k:60155
- Duplantier, B. and Kwon, K.-H. (1988). Conformal invariance and intersections of random walks. Phys. Rev. Lett. 61 2514-2517.
- James, N. and Peres, Y. (1995). Cutpoints and exchangeable events for random walks, to appear in Theory of Probab. and Appl.
- Lawler, G. (1991). Intersections of Random Walks. Birkhauser-Boston Math. Review 92f:60012
- Lawler, G. (1992). Escape probabilities for slowly recurrent sets. Probab. Th. and Rel. Fields 94, 91-117. Math. Review 94c:60113
- Lawler, G. (1996). Hausdorff dimension of cut points for Brownian motion. Electon. J. Probab. 1, paper no. 2.
- Lawler, G. and Puckette, E (1994), The disconnection exponent for simple random walk, to appear in Israel Journal of Mathematics.
- Li, B. and Sokal, A. (1990). High-precision Monte Carlo test of the conformal-invariance predictions for two-dimensional mutually avoiding walks. J. Stat. Phys. 61 723-748.

This work is licensed under a Creative Commons Attribution 3.0 License.