The Norm of the Product of a Large Matrix and a Random Vector

Albrecht Böttcher (TU Chemnitz)
Sergei Grudsky (CINVESTAV del I.P.N.)

Abstract


Given a real or complex $n \times n$ matrix $A_n$, we compute the expected value and the variance of the random variable $\| A_n x\|^2/\| A_n \|^2$, where $x$ is uniformly distributed on the unit sphere of $R^n$ or $C^n$. The result is applied to several classes of structured matrices. It is in particular shown that if $A_n$ is a Toeplitz matrix $T_n(b)$, then for large $n$ the values of $\| A_n x\|/\| A_n \|$ cluster fairly sharply around $\| b \|_2/\| b \|_\infty$ if $b$ is bounded and around zero in case $b$ is unbounded.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-29

Publication Date: May 22, 2003

DOI: 10.1214/EJP.v8-132

References

  1. F. Avram: On bilinear forms in Gaussian random variables and Toeplitz matrices.  Probab. Theory Related Fields  79 (1988), 37--45. MR  90a:60035
  2. A. Böttcher and S. Grudsky: Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis. Hindustan Boook Agency, New Delhi 2000 and
          Birkhäuser Verlag, Basel 2000. MR 2001g:47043
  3. A. Böttcher and B. Silbermann: Analysis of Toeplitz Operators. Akademie-Verlag, Berlin 1989 and Springer-Verlag, Berlin 1990. MR 92e:47001
  4. A. Böttcher and B. Silbermann: Introduction to Large Truncated Toeplitz Matrices. Springer-Verlag, New York 1999.  MR 2001b:47043
  5. S. Dasgupta and A. Gupta: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Structures & Algorithms  22 (2003), 60--65. MR 1 943 859
  6. D. Fasino and P. Tilli: Spectral clustering properties of block multilevel Hankel matrices. Linear Algebra Appl. 306 (2000), 155--163. MR  2000j:47053
  7. G. M. Fichtenholz:  Differential- und Integralrechnung, Vol. III. Deutscher Verlag der Wissenschaften, Berlin 1977. MR 57#12795
  8. P. Halmos:  A Hilbert Space Problem Book. D. van Nostrand, Princeton 1967. MR 34#8178
  9. N. J. Higham: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA 1996. MR 97a:65047
  10. M. Kac, W. L. Murdock, and G. Szegö: On the eigenvalues of certain Hermitian forms. J. Rat. Mech. Anal. 2 (1953), 787--800. MR  15,538b
  11. S. V. Parter: On the distribution of the singular values of Toeplitz matrices. Linear Algebra Appl.  80 (1986), 115--130. MR 87k:47062
  12. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev:  Integrals and Series. Vol. 1. Elementary Functions. Gordon and Breach, New York 1986. MR  88f:00013
  13. S. Roch and B. Silbermann: Index calculus for approximation methods and singular value decomposition.  J. Math. Analysis Appl. 225 (1998), 401--426. MR  99g:47030
  14. S. M. Rump: Structured perturbations. Part I: Normwise distances. Preprint, April 2002.
  15. P. Tilli: A note on the spectral distribution of Toeplitz matrices.  Linear and Multilinear Algebra  45 (1998), 147--159. MR  99j:65063
  16. O. Toeplitz: Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen.  Math. Ann. 70 (1911), 351--376.
  17. W. F. Trench: Asymptotic distribution of the spectra of a class of generalized Kac-Murdock-Szegö matrices.  Linear Algebra Appl.  294  (1999), 181--192. MR  2000c:15012
  18. E. E. Tyrtyshnikov and N. L. Zamarashkin: Toeplitz eigenvalues for Radon measures. Linear Algebra Appl.  343/344 (2002), 345--354. MR  2002k:47061


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.