Competing Species Superprocesses with Infinite Variance

Klaus Fleischmann (Weierstrass Institute for Applied Analysis and Stochastics)
Leonid Mytnik (Technion - Israel Institute of Technology)

Abstract


We study pairs of interacting measure-valued branching processes (superprocesses) with alpha-stable migration and $(1+\beta)$-branching mechanism. The interaction is realized via some killing procedure. The collision local time for such processes is constructed as a limit of approximating collision local times. For certain dimensions this convergence holds uniformly over all pairs of such interacting superprocesses. We use this uniformity to prove existence of a solution to a competing species martingale problem under a natural dimension restriction. The competing species model describes the evolution of two populations where individuals of different types may kill each other if they collide. In the case of Brownian migration and finite variance branching, the model was introduced by Evans and Perkins (1994). The fact that now the branching mechanism does not have finite variance requires the development of new methods for handling the collision local time which we believe are of some independent interest.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1 - 59

Publication Date: May 22, 2003

DOI: 10.1214/EJP.v8-136

References

  1. M.T. Barlow, S.N. Evans, and E.A. Perkins. Collision local times and measure-valued processes. Canad. J. Math., 43(5):897-938, 1991. Math. Review 93a:60119
  2. D.A. Dawson. Geostochastic calculus. Canadian J. Statistics, 6:143-168, 1978. Math. Review 81g:60076
  3. D.A. Dawson. Measure-valued Markov processes. In P.L. Hennequin, editor, …cole d'ÈtÈ de probabilitÈs de Saint Flour XXI-1991, volume 1541 of Lecture Notes Math., pages 1-260. Springer-Verlag, Berlin, 1993. Math. Review 94m:60101
  4. D.A. Dawson, A.M. Etheridge, K. Fleischmann, L. Mytnik, E.A. Perkins, and J. Xiong. Mutually catalytic branching in the plane: Finite measure states. Ann. Probab., 30(4):1681-1762, 2002. Math. Review 1 944 004
  5. D.A. Dawson, A.M. Etheridge, K. Fleischmann, L. Mytnik, E.A. Perkins, and J. Xiong. Mutually catalytic branching in the plane: Infinite measure states. Electron. J. Probab., 7 (Paper no. 15) 61 pp. (electronic), 2002. Math. Review 1 921 744
  6. D.A. Dawson and K. Fleischmann. Catalytic and mutually catalytic super-Brownian motions. In Ascona 1999 Conference. Volume 52 of Progress in Probability, pages 89-110. Birkh‰user Verlag, 2002. Math. Review 1 958 811
  7. D.A. Dawson, K. Fleischmann, L. Mytnik, E.A. Perkins, and J. Xiong. Mutually catalytic branching in the plane: Uniqueness. Ann. Inst. Henri PoincarÈ Probab. Statist. 39(1):135-191, 2003. Math. Review 1 959 845
  8. D.A. Dawson and E.A. Perkins. Long-time behavior and coexistence in a mutually catalytic branching model. Ann. Probab., 26(3):1088-1138, 1998. Math. Review 99f:60167
  9. J.L. Doob. Measure Theory. Springer-Verlag, New York, 1994. Math. Review 95c:28001
  10. E.B. Dynkin. On regularity of superprocesses. Probab. Theory Related Fields, 95(2):263-281, 1993. Math. Review 94f:60107
  11. E.B. Dynkin. An Introduction to Branching Measure-valued Processes. American Mathematical Society, Providence, RI, 1994. Math. Review 96f:60145
  12. E.B. Dynkin. Diffusions, Superdiffusions and Partial Differential Equations. Volume 50 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2002. Math. Review 2003c:60001
  13. A.M. Etheridge. An Introduction to Superprocesses. Volume 20 of Univ. Lecture Series. AMS, Rhode Island, 2000. Math. Review 2001m:60111
  14. S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization and Convergence. Wiley, New York, 1986. Math. Review 88a:60130
  15. S.N. Evans and E.A. Perkins. Measure-valued branching diffusions with singular interactions Canad. J. Math., 46(1):120-168, 1994. Math. Review 94J:60099
  16. S.N. Evans and E.A. Perkins. Collision local times, historical stochastic calculus, and competing superprocesses. Electron. J. Probab., 3 (Paper no. 5), 120 pp. (electronic), 1998. Math. Review 99h:60098
  17. K. Fleischmann and J. Xiong. A cyclically catalytic super-Brownian motion. Ann. Probab., 29(2):820-861, 2001. Math. Review 2002h:60224
  18. R.K. Getoor. On the construction of kernels. In SÈminaires de probabilitÈs IX. Volume 465 of Lecture Notes Math., pages 443-463. Springer Verlag, Berlin, 1974. Math. Review 55:9289
  19. I. Iscoe. A weighted occupation time for a class of measure-valued critical branching Brownian motions. Probab. Theory Related Fields, 71:85-116, 1986. Math. Review 87c:60070
  20. O. Kallenberg. Foundations of Modern Probability. Springer-Verlag, New York, 1997. Math. Review 99e:60001
  21. J.-F. Le Gall. Spatial Branching Processes, Random Snakes and Partial Differential Equations. Birkh‰user Verlag, Basel, 1999. Math. Review 2001g:60211
  22. C. Mueller and E.A. Perkins. Extinction for two parabolic stochastic PDE's on the lattice. Ann. Inst. H. PoincarÈ Probab. Statist., 36(3):301-338, 2000. Math. Review 2001i:60104
  23. L. Mytnik. Collision measure and collision local time for (alpha,d,beta) superprocesses. J. Theoret. Probab., 11(3):733-763, 1998. Math. Review 2000a:60146
  24. L. Mytnik. Uniqueness for a mutually catalytic branching model. Probab. Theory Related Fields, 112(2):245-253, 1998. Math. Review 99i:60125
  25. L. Mytnik. Uniqueness for a competing species model. Canad. J. Math., 51(2):372-448, 1999. Math. Review 2000g:60112
  26. E.A. Perkins. On the martingale problem for interactive measure-valued branching diffusions. Mem. Amer. Math. Soc., 549, 1995. Math. Review 95i:60076
  27. E.A. Perkins. Dawson-Watanabe superprocesses and measure-valued diffusions. In …cole d'ÈtÈ de probabilitÈs de Saint Flour XXIX-1999, Lecture Notes Math., pages 125-324, Springer-Verlag, Berlin, 2002. Math. Review 1 915 445
  28. Ph. Protter. Stochastic Integration and Differential Equations, a New Approach. Volume 21 of Appl. Math., Springer-Verlag, Berlin, 1990. Math. Review 91i:60148
  29. S. Roelly-Coppoletta. A criterion of convergence of measure-valued processes: application to measure branching processes. Stochastics, 17:43-65, 1986. Math. Review 88i:60132
  30. J.B. Walsh. An introduction to stochastic partial differential equations. Volume 1180 of Lecture Notes Math., pages 266-439. …cole d'ÈtÈ de probabilitÈs de Saint-Flour XIV - 1984, Springer-Verlag Berlin, 1986. Math. Review 88a:60114
  31. K. Yosida. Functional Analysis. Springer-Verlag, 4th edition, 1974. Math. Review 50:2851


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.