Brownian Motion on Compact Manifolds: Cover Time and Late Points

Amir Dembo (Stanford University)
Yuval Peres (University of California, Berkeley)
Jay Rosen (College of Staten Island, CUNY)

Abstract


Let $M$ be a smooth, compact, connected Riemannian manifold of dimension $d>2$ and without boundary. Denote by $T(x,r)$ the hitting time of the ball of radius $r$ centered at $x$ by Brownian motion on $M$. Then, $C_r(M)=\sup_{x \in M} T(x,r)$ is the time it takes Brownian motion to come within $r$ of all points in $M$. We prove that $C_r(M)/(r^{2-d}|\log r|)$ tends to $\gamma_d V(M)$ almost surely as $r\to 0$, where $V(M)$ is the Riemannian volume of $M$. We also obtain the ``multi-fractal spectrum'' $f(\alpha)$ for ``late points'', i.e., the dimension of the set of $\alpha$-late points $x$ in $M$ for which $\limsup_{r\to 0} T(x,r)/ (r^{2-d}|\log r|) = \alpha >0$.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-14

Publication Date: August 25, 2003

DOI: 10.1214/EJP.v8-139

References

  1. Robert B. Ash. Real analysis and probability. Academic Press, New York, 1972.  MR55:8280
  2. Thierry Aubin. Nonlinear analysis on manifolds. Monge-AmpËre equations, volume 252 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1982.  MR85j:58002
  3. Gilles Courtois. Spectrum of manifolds with holes. J. Funct. Anal., 134(1):194-221, 1995.  MR97b:58142
  4. Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni. Thick points for spatial Brownian motion: multifractal analysis of occupation measure. Ann. Probab., 28(1):1-35, 2000.  MR2001g:60194
  5. Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni. Thin points for Brownian motion. Ann. Inst. H. PoincarÈ Probab. Statist., 36(6):749-774, 2000.  MR2002k:60164
  6. Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni. Thick points for planar Brownian motion and the Erdos-Taylor conjecture on random walk. Acta Math., 186(2):239-270, 2001.  MR2002k:60106
  7. A. Dembo, Y. Peres, J. Rosen and O. Zeitouni, Cover times for Brownian motion and random walks in two dimensions, Ann. Math., to appear..
  8. James Eells, Jr. and J. H. Sampson. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 86:109-160, 1964.  MR29:1603
  9. P. J. Fitzsimmons and Jim Pitman. Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process. Stochastic Process. Appl., 79(1):117-134, 1999.  MR2000a:60136
  10. H. Joyce and D. Preiss. On the existence of subsets of finite positive packing measure. Mathematika, 42(1):15-24, 1995.  MR96g:28010
  11. Davar Khoshnevisan, Yuval Peres, and Yimin Xiao. Limsup random fractals. Electron. J. Probab., 5:no. 5, 24 pp. (electronic), 2000.  MR2001a:60095
  12. Peter Matthews. Covering problems for Brownian motion on spheres. Ann. Probab., 16(1):189-199, 1988.  MR89a:60190
  13. Peter Matthews. Covering problems for Markov chains. Ann. Probab., 16(3):1215-1228, 1988.  MR89j:60092
  14. Steven Orey and S. James Taylor. How often on a Brownian path does the law of iterated logarithm fail? Proc. London Math. Soc. (3), 28:174-192, 1974.  MR50:11486


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.