Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales

Mihai Gradinaru (Institut de Math'ematiques 'Elie Cartan, Universit'e Henri Poincar'e)
Ivan Nourdin (Institut de Math'ematiques 'Elie Cartan, Universit'e Henri Poincar'e)

Abstract


Let $X$ be the fractional Brownian motion of any Hurst index $H\in (0,1)$ (resp. a semimartingale) and set $\alpha=H$ (resp. $\alpha=\frac{1}{2}$). If $Y$ is a continuous process and if $m$ is a positive integer, we study the existence of the limit, as $\varepsilon\rightarrow 0$, of the approximations $$ I_{\varepsilon}(Y,X) :=\left\{\int_{0}^{t}Y_{s}\left(\frac{X_{s+\varepsilon}-X_{s}}{\varepsilon^{\alpha}}\right)^{m}ds,\,t\geq 0\right\} $$ of $m$-order integral of $Y$ with respect to $X$. For these two choices of $X$, we prove that the limits are almost sure, uniformly on each compact interval, and are in terms of the $m$-th moment of the Gaussian standard random variable. In particular, if $m$ is an odd integer, the limit equals to zero. In this case, the convergence in distribution, as $\varepsilon\rightarrow 0$, of $\varepsilon^{-\frac{1}{2}} I_{\varepsilon}(1,X)$ is studied. We prove that the limit is a Brownian motion when $X$ is the fractional Brownian motion of index $H\in (0,\frac{1}{2}]$, and it is in term of a two dimensional standard Brownian motion when $X$ is a semimartingale.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-26

Publication Date: October 30, 2003

DOI: 10.1214/EJP.v8-166

References

  1. Alòs, E., Mazet, O., Nualart, D. (2000), Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than ½, Stoch. Proc. Appl., 86, 121-139 MR1741199 (2000m:60059)
  2. Alòs, E., León, J.A., Nualart, D. (2001) Stratonovich stochastic calculus for fractional Brownian motion with Hurst parameter lesser than ½, Taiwanese J. Math, 5, 609-632 MR1849782 (2002g:60081)
  3. Cheredito, P., Nualart, D. (2003) Symmetric integration with respect to fractional Brownian motion Preprint Barcelona
  4. Coutin, L., Qian, Z. (2000) Stochastic differential equations for fractional Brownian motion, C. R. Acad. Sci. Paris, 330, Serie I, 1-6 MR1780221 (2001d:60038)
  5. Föllmer, H. (1981) Calcul d'Itô sans probabilités, Séminaire de Probabilités XV 1979/80, Lect. Notes in Math. 850, 143-150, Springer-Verlag. MR0622559 (82j:60098)
  6. Giraitis, L., Surgailis, D.,(1985) CLT and other limit theorems for functionals of Gaussian processes, Z. Wahrsch. verw. Gebiete, 70, 191-212. MR0799146 (86j:60067)
  7. Gradinaru, M., Russo, F., Vallois, P., (2001) Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H<=1/4, To appear in Ann. Probab., 31.
  8. Gradinaru, M., Nourdin, I., Russo, F., Vallois, P. (2002) m-order integrals and Itô's formula for non-semimartingale processes; the case of a fractional Brownian motion with any Hurst index, Preprint IECN 2002-48
  9. Guyon, X., León, J. (1989) Convergence en loi des H-variations d'un processus gaussien stationnaire sur R, Ann. Inst. Henri Poincaré, 25, 265-282. MR1023952 (91d:60053)
  10. Istas, J., Lang, G. (1997) Quadratic variations and estimation of the local H"older index of a Gaussian process, Ann. Inst. Henri Poincaré, 33, 407-436. MR1465796 (98e:60057)
  11. Itô, K. (1951) Multiple Wiener integral, J. Math. Soc. Japan 3, 157-169. MR0044064 (13,364a)
  12. Jakubowski, A., Mémin, J., Pagès, G. (1989) Convergence en loi des suites d'intégrales stochastiques sur l'espace D1 de Skorokhod, Probab. Theory Related Fields, 81, 111-137. MR0981569 (90e:60065)
  13. Nualart, D. (1995) The Malliavin calculus and related topics, Springer, Berlin Heidelber New-York MR1344217 (96k:60130)
  14. Nualart, D., Peccati, G. (2003) Convergence in law of multiple stochastic integrals, Preprint Barcelona.
  15. Revuz, D., Yor, M. (1994) Continuous martingales and Brownian motion, 2nd edition, Springer-Verlag MR1303781 (95h:60072)
  16. Rogers, L.C.G. (1997) Arbitrage with fractional Brownian motion, Math. Finance, 7, 95-105 MR1434408 (98b:90014)
  17. Russo, F., Vallois, P. (1996) Itô formula for C1-functions of semimartingales, Probab. Theory Relat. Fields 104, 27-41 MR1367665 (96m:60125)
  18. Taqqu, M.S. (1977) Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exibit a long range dependence, Z. Wahrsch. verw. Gebiete 40, 203-238 MR0471045 (57 #10786)
  19. Taqqu, M.S. (1979) Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. verw. Gebiete 50, 53-83 MR0550123 (81i:60020)
  20. Zähle, M. (1998) Integration with respect to fractal functions and stochastic calculus I., Probab. Theory Relat. Fields 111, 333-374 MR1640795 (99j:60073)


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.