Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales
Ivan Nourdin (Institut de Math'ematiques 'Elie Cartan, Universit'e Henri Poincar'e)
Abstract
Let $X$ be the fractional Brownian motion of any Hurst index $H\in (0,1)$ (resp. a semimartingale) and set $\alpha=H$ (resp. $\alpha=\frac{1}{2}$). If $Y$ is a continuous process and if $m$ is a positive integer, we study the existence of the limit, as $\varepsilon\rightarrow 0$, of the approximations $$ I_{\varepsilon}(Y,X) :=\left\{\int_{0}^{t}Y_{s}\left(\frac{X_{s+\varepsilon}-X_{s}}{\varepsilon^{\alpha}}\right)^{m}ds,\,t\geq 0\right\} $$ of $m$-order integral of $Y$ with respect to $X$. For these two choices of $X$, we prove that the limits are almost sure, uniformly on each compact interval, and are in terms of the $m$-th moment of the Gaussian standard random variable. In particular, if $m$ is an odd integer, the limit equals to zero. In this case, the convergence in distribution, as $\varepsilon\rightarrow 0$, of $\varepsilon^{-\frac{1}{2}} I_{\varepsilon}(1,X)$ is studied. We prove that the limit is a Brownian motion when $X$ is the fractional Brownian motion of index $H\in (0,\frac{1}{2}]$, and it is in term of a two dimensional standard Brownian motion when $X$ is a semimartingale.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-26
Publication Date: October 30, 2003
DOI: 10.1214/EJP.v8-166
References
- Alòs, E., Mazet, O., Nualart, D. (2000), Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than ½, Stoch. Proc. Appl., 86, 121-139 MR1741199 (2000m:60059)
- Alòs, E., León, J.A., Nualart, D. (2001) Stratonovich stochastic calculus for fractional Brownian motion with Hurst parameter lesser than ½, Taiwanese J. Math, 5, 609-632 MR1849782 (2002g:60081)
- Cheredito, P., Nualart, D. (2003) Symmetric integration with respect to fractional Brownian motion Preprint Barcelona
- Coutin, L., Qian, Z. (2000) Stochastic differential equations for fractional Brownian motion, C. R. Acad. Sci. Paris, 330, Serie I, 1-6 MR1780221 (2001d:60038)
- Föllmer, H. (1981) Calcul d'Itô sans probabilités, Séminaire de Probabilités XV 1979/80, Lect. Notes in Math. 850, 143-150, Springer-Verlag. MR0622559 (82j:60098)
- Giraitis, L., Surgailis, D.,(1985) CLT and other limit theorems for functionals of Gaussian processes, Z. Wahrsch. verw. Gebiete, 70, 191-212. MR0799146 (86j:60067)
- Gradinaru, M., Russo, F., Vallois, P., (2001) Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H<=1/4, To appear in Ann. Probab., 31.
- Gradinaru, M., Nourdin, I., Russo, F., Vallois, P. (2002) m-order integrals and Itô's formula for non-semimartingale processes; the case of a fractional Brownian motion with any Hurst index, Preprint IECN 2002-48
- Guyon, X., León, J. (1989) Convergence en loi des H-variations d'un processus gaussien stationnaire sur R, Ann. Inst. Henri Poincaré, 25, 265-282. MR1023952 (91d:60053)
- Istas, J., Lang, G. (1997) Quadratic variations and estimation of the local H"older index of a Gaussian process, Ann. Inst. Henri Poincaré, 33, 407-436. MR1465796 (98e:60057)
- Itô, K. (1951) Multiple Wiener integral, J. Math. Soc. Japan 3, 157-169. MR0044064 (13,364a)
- Jakubowski, A., Mémin, J., Pagès, G. (1989) Convergence en loi des suites d'intégrales stochastiques sur l'espace D1 de Skorokhod, Probab. Theory Related Fields, 81, 111-137. MR0981569 (90e:60065)
- Nualart, D. (1995) The Malliavin calculus and related topics, Springer, Berlin Heidelber New-York MR1344217 (96k:60130)
- Nualart, D., Peccati, G. (2003) Convergence in law of multiple stochastic integrals, Preprint Barcelona.
- Revuz, D., Yor, M. (1994) Continuous martingales and Brownian motion, 2nd edition, Springer-Verlag MR1303781 (95h:60072)
- Rogers, L.C.G. (1997) Arbitrage with fractional Brownian motion, Math. Finance, 7, 95-105 MR1434408 (98b:90014)
- Russo, F., Vallois, P. (1996) Itô formula for C1-functions of semimartingales, Probab. Theory Relat. Fields 104, 27-41 MR1367665 (96m:60125)
- Taqqu, M.S. (1977) Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exibit a long range dependence, Z. Wahrsch. verw. Gebiete 40, 203-238 MR0471045 (57 #10786)
- Taqqu, M.S. (1979) Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. verw. Gebiete 50, 53-83 MR0550123 (81i:60020)
- Zähle, M. (1998) Integration with respect to fractal functions and stochastic calculus I., Probab. Theory Relat. Fields 111, 333-374 MR1640795 (99j:60073)

This work is licensed under a Creative Commons Attribution 3.0 License.