Large deviations and slowdown asymptotics for one-dimensional excited random walks
Abstract
We study the large deviations of excited random walks on $\mathbb{Z}$. We prove a large deviation principle for both the hitting times and the position of the random walk and give a qualitative description of the respective rate functions. When the excited random walk is transient with positive speed $v_0$, then the large deviation rate function for the position of the excited random walk is zero on the interval $[0,v_0]$ and so probabilities such as $P(X_n < nv)$ for $v \in (0,v_0)$ decay subexponentially. We show that rate of decay for such slowdown probabilities is polynomial of the order $n^{1-\delta/2}$, where $\delta>2$ is the expected total drift per site of the cookie environment.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-24
Publication Date: June 21, 2012
DOI: 10.1214/EJP.v17-1726
References
- Basdevant, Anne-Laure; Singh, Arvind. On the speed of a cookie random walk. Probab. Theory Related Fields 141 (2008), no. 3-4, 625--645. MR2391167
- Basdevant, Anne-Laure; Singh, Arvind. Rate of growth of a transient cookie random walk. Electron. J. Probab. 13 (2008), no. 26, 811--851. MR2399297
- Benjamini, Itai; Wilson, David B. Excited random walk. Electron. Comm. Probab. 8 (2003), 86--92 (electronic). MR1987097
- Brillinger, David R. A note on the rate of convergence of a mean. Biometrika 49 1962 574--576. MR0156372
- Bryc, Włodzimierz; Dembo, Amir. Large deviations and strong mixing. Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), no. 4, 549--569. MR1411271
- Comets, Francis; Gantert, Nina; Zeitouni, Ofer. Quenched, annealed and functional large deviations for one-dimensional random walk in random environment. Probab. Theory Related Fields 118 (2000), no. 1, 65--114. MR1785454
- de Acosta, A. Upper bounds for large deviations of dependent random vectors. Z. Wahrsch. Verw. Gebiete 69 (1985), no. 4, 551--565. MR0791911
- Dembo, Amir; Peres, Yuval; Zeitouni, Ofer. Tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys. 181 (1996), no. 3, 667--683. MR1414305
- Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications. Corrected reprint of the second (1998) edition. Stochastic Modelling and Applied Probability, 38. Springer-Verlag, Berlin, 2010. xvi+396 pp. ISBN: 978-3-642-03310-0 MR2571413
- Dolgopyat, Dmitry. Central limit theorem for excited random walk in the recurrent regime. ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011), 259--268. MR2831235
- Dmitry Dolgopyat and Elena Kosygina, Scaling limits of recurrent excited random walks on integers, January 2012, available at arXiv:math/1201.0379.
- Kesten, H.; Kozlov, M. V.; Spitzer, F. A limit law for random walk in a random environment. Compositio Math. 30 (1975), 145--168. MR0380998
- Kosygina, Elena; Mountford, Thomas. Limit laws of transient excited random walks on integers. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), no. 2, 575--600. MR2814424
- Kosygina, Elena; Zerner, Martin P. W. Positively and negatively excited random walks on integers, with branching processes. Electron. J. Probab. 13 (2008), no. 64, 1952--1979. MR2453552
- Lawler, Gregory F. Introduction to stochastic processes. Second edition. Chapman & Hall/CRC, Boca Raton, FL, 2006. xiv+234 pp. ISBN: 978-1-58488-651-8; 1-58488-651-X MR2255511
- Mogulʹskiĭ, A. A. Small deviations in the space of trajectories. (Russian) Teor. Verojatnost. i Primenen. 19 (1974), 755--765. MR0370701
- Nagaev, S. V. Large deviations of sums of independent random variables. Ann. Probab. 7 (1979), no. 5, 745--789. MR0542129
- Ney, P.; Nummelin, E. Markov additive processes II. Large deviations. Ann. Probab. 15 (1987), no. 2, 593--609. MR0885132
- Rassoul-Agha, Firas. Large deviations for random walks in a mixing random environment and other (non-Markov) random walks. Comm. Pure Appl. Math. 57 (2004), no. 9, 1178--1196. MR2059678
- Solomon, Fred. Random walks in a random environment. Ann. Probability 3 (1975), 1--31. MR0362503
- Zerner, Martin P. W. Multi-excited random walks on integers. Probab. Theory Related Fields 133 (2005), no. 1, 98--122. MR2197139

This work is licensed under a Creative Commons Attribution 3.0 License.