Download this PDF file Fullscreen Fullscreen Off
References
- Dellacherie, C., Meyer, P.A. (1980) Probabilit'es et potentiel, Chapters V-VIII, Hermann, Paris 1980. Math. Review link.
- Engelking, R., General Topology, Helderman, Berlin 1989. Math. Review link.
- Fernique, X., Processus lin'eaires, processus g'en'eralis'es, Ann. Inst. Fourier (Grenoble), 17 (1967), 1-92. Math. Review link.
- Fernique, X., Convergence en loi de variables al'etoires et de fonctions al'etoires, propri'etes de compacit'e des lois, II, in: J. Az'ema, P.A. Meyer, M. Yor, (Eds.) S'eminaire de Probabilit'es XXVII, Lecture Notes in Math., 1557 , 216-232, Springer, Berlin 1993. Math. Review link.
- Jakubowski, A., The a.s. Skorohod representation for subsequences in nonmetric spaces, Theory Probab. Appl., 42 (1997), 209-216, (preprint). Math. Review number not available.
- Jakubowski, A., Convergence in various topologies for stochastic integrals driven by semimartingales, Ann. Probab., 24 (1996), 2141-2153. Math. Review number not available.
- Jakubowski, A., From convergence of functions to convergence of stochastic processes. On Skorokhod's sequential approach to convergence in distribution., to appear in A Volume in Honour of A.V. Skorokhod, VSP 1997, (preprint). Math. Review number not available.
- Jakubowski, A., M'emin, J., Pages, G., Convergence en loi des suites d'int'egrales stochastiques sur l'espace $GD^1$ de Skorokhod, Probab. Th. Rel. Fields, 81 (1989), 111-137. Math. Review link.
- Kantorowich, L.V., Vulih, B.Z. & Pinsker, A.G., Functional Analysis in Partially Ordered Spaces (in Russian), Gostekhizdat, Moscow 1950. Math. Review number not available.
- Kisy'nski, J., Convergence du type L, Colloq. Math., 7 (1960), 205-211. Math. Review link.
- Kurtz, T., Random time changes and convergence in distribution under the Meyer-Zheng conditions, Ann. Probab., 19 (1991), 1010-1034. Math. Review link.
- Kurtz, T., Protter, P., Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab., 19 (1991), 1035-1070. Math. Review link.
- M'emin, J., Sl omi'nski, L. Condition UT et stabilit'e en loi des solutions d'equations diff'erentieles stochastiques, S'em. de Probab. XXV, Lecture Notes in Math., 1485, 162-177, Springer, Berlin 1991. Math. Review link.
- Meyer, P.A., Zheng, W.A., Tightness criteria for laws of semimartingales, Ann. Inst. Henri Poincar'e B, 20 (1984), 353-372. Math. Review link.
- Protter, Ph., Stochastic Integration and Differential Equations. A New Approach., 2nd Ed., Springer 1992. Math. Review link.
- Skorohod,A.V., Limit theorems for stochastic processes, Theor. Probability Appl., 1 (1956), 261-290. Math. Review link.
- Sl omi'nski, L., Stability of strong solutions of stochastic differential equations, Stoch. Proc. Appl., 31 (1989), 173-202. Math. Review link.
- Sl omi'nski, L., Stability of stochastic differential equations driven by general semimartingales, Dissertationes Math., CCCXLIX (1996), 113 p. Math. Review number not available.
- Stricker, C., Lois de semimartingales et crit`eres de compacit'e, S'eminares de probabilit'es XIX. Lect. Notes in Math., 1123, Springer, Berlin 1985. Math. Review link.
- Topso e, F., A criterion for weak convergence of measures with an application to convergence of measures on $GD,[0,1]$, Math. Scand. 25 (1969), 97-104. Math. Review link.

This work is licensed under a Creative Commons Attribution 3.0 License.