The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • R. Abraham and J.-F. Delmas. A continuum-tree-valued Markov process. To appear in The Annals of Probability, 2012.
  • Abraham, Romain; Delmas, Jean-François. Williams' decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations. Stochastic Process. Appl. 119 (2009), no. 4, 1124--1143. MR2508567
  • Aldous, David. The continuum random tree. I. Ann. Probab. 19 (1991), no. 1, 1--28. MR1085326
  • Bertoin, Jean; Fontbona, Joaquin; Martínez, Servet. On prolific individuals in a supercritical continuous-state branching process. J. Appl. Probab. 45 (2008), no. 3, 714--726. MR2455180
  • Bertoin, Jean; Le Gall, Jean-François. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 (2000), no. 2, 249--266. MR1771663
  • Champagnat, Nicolas; Rœlly, Sylvie. Limit theorems for conditioned multitype Dawson-Watanabe processes and Feller diffusions. Electron. J. Probab. 13 (2008), no. 25, 777--810. MR2399296
  • Y.-T. Chen and J.-F. Delmas. Smaller population size at the MRCA time for stationary branching processes. To appear in The Annals of Probability, 2012.
  • Cranston, M.; Koralov, L.; Molchanov, S.; Vainberg, B. A solvable model for homopolymers and self-similarity near the critical point. Random Oper. Stoch. Equ. 18 (2010), no. 1, 73--95. MR2606477
  • Dhersin, Jean-Stéphane; Serlet, Laurent. A stochastic calculus approach for the Brownian snake. Canad. J. Math. 52 (2000), no. 1, 92--118. MR1745702
  • Donnelly, Peter; Kurtz, Thomas G. Particle representations for measure-valued population models. Ann. Probab. 27 (1999), no. 1, 166--205. MR1681126
  • Duquesne, Thomas; Le Gall, Jean-François. Random trees, Lévy processes and spatial branching processes. Astérisque No. 281 (2002), vi+147 pp. MR1954248
  • Duquesne, Thomas; Winkel, Matthias. Growth of Lévy trees. Probab. Theory Related Fields 139 (2007), no. 3-4, 313--371. MR2322700
  • Dynkin, Eugene B. An introduction to branching measure-valued processes. CRM Monograph Series, 6. American Mathematical Society, Providence, RI, 1994. x+134 pp. ISBN: 0-8218-0269-0 MR1280712
  • Engländer, János; Harris, Simon C.; Kyprianou, Andreas E. Strong law of large numbers for branching diffusions. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 1, 279--298. MR2641779
  • Engländer, János; Kyprianou, Andreas E. Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32 (2004), no. 1A, 78--99. MR2040776
  • Engländer, János; Pinsky, Ross G. On the construction and support properties of measure-valued diffusions on $D\subseteq{\bf R}^ d$ with spatially dependent branching. Ann. Probab. 27 (1999), no. 2, 684--730. MR1698955
  • Klebaner, F. C.; Rösler, U.; Sagitov, S. Transformations of Galton-Watson processes and linear fractional reproduction. Adv. in Appl. Probab. 39 (2007), no. 4, 1036--1053. MR2381587
  • Kurtz, Thomas G.; Rodrigues, Eliane R. Poisson representations of branching Markov and measure-valued branching processes. Ann. Probab. 39 (2011), no. 3, 939--984. MR2789580
  • Le Gall, J.-F. A class of path-valued Markov processes and its applications to superprocesses. Probab. Theory Related Fields 95 (1993), no. 1, 25--46. MR1207305
  • Li, Zeng Hu. A note on the multitype measure branching process. Adv. in Appl. Probab. 24 (1992), no. 2, 496--498. MR1167269
  • Perkins, Edwin. Dawson-Watanabe superprocesses and measure-valued diffusions. Lectures on probability theory and statistics (Saint-Flour, 1999), 125--324, Lecture Notes in Math., 1781, Springer, Berlin, 2002. MR1915445
  • Pinsky, Ross G. Positive harmonic functions and diffusion. Cambridge Studies in Advanced Mathematics, 45. Cambridge University Press, Cambridge, 1995. xvi+474 pp. ISBN: 0-521-47014-5 MR1326606
  • Roynette, Bernard; Yor, Marc. Penalising Brownian paths. Lecture Notes in Mathematics, 1969. Springer-Verlag, Berlin, 2009. xiv+275 pp. ISBN: 978-3-540-89698-2 MR2504013
  • Seneta, E. Non-negative matrices and Markov chains. Revised reprint of the second (1981) edition [Springer-Verlag, New York; MR0719544]. Springer Series in Statistics. Springer, New York, 2006. xvi+287 pp. ISBN: 978-0387-29765-1; 0-387-29765-0 MR2209438
  • Serlet, Laurent. The occupation measure of super-Brownian motion conditioned to nonextinction. J. Theoret. Probab. 9 (1996), no. 3, 561--578. MR1400587
  • Williams, David. Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. London Math. Soc. (3) 28 (1974), 738--768. MR0350881

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.