Non-colliding Brownian bridges and the asymmetric tacnode process

Patrik Lino Ferrari (Bonn University)
Bálint Vető (Bonn University)

Abstract


We consider non-colliding Brownian bridges starting from two points and returning to the same position. These positions are chosen such that, in the limit of large number of bridges, the two families of bridges just touch each other forming a tacnode. We obtain the limiting process at the tacnode, the "asymmetric tacnode process". It is a determinantal point process with correlation kernel given by two parameters: (1) the curvature's ratio $\lambda>0$ of the limit shapes of the two families of bridges, (2) a parameter $\sigma$ controlling the interaction on the fluctuation scale. This generalizes the result for the symmetric tacnode process ($\lambda=1$ case).

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-17

Publication Date: June 14, 2012

DOI: 10.1214/EJP.v17-1811

References

  • Adler, Mark; Ferrari, Patrik L.; van Moerbeke, Pierre. Airy processes with wanderers and new universality classes. Ann. Probab. 38 (2010), no. 2, 714--769. MR2642890
  • M. Adler, K. Johansson, and P. van Moerbeke, phDouble Aztec diamonds and the tacnode process, ARXIV:1112.5532.
  • Hough, J. Ben; Krishnapur, Manjunath; Peres, Yuval; Virág, Bálint. Determinantal processes and independence. Probab. Surv. 3 (2006), 206--229. MR2216966
  • Borodin, Alexei; Duits, Maurice. Limits of determinantal processes near a tacnode. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), no. 1, 243--258. MR2779404
  • A. Borodin and P.L. Ferrari, phAnisotropic growth of random surfaces in 2+1 dimensions, ARXIV:0804.3035.
  • Borodin, Alexei; Ferrari, Patrik L. Large time asymptotics of growth models on space-like paths. I. PushASEP. Electron. J. Probab. 13 (2008), no. 50, 1380--1418. MR2438811
  • Borodin, Alexei; Kuan, Jeffrey. Random surface growth with a wall and Plancherel measures for $\rm O(\infty)$. Comm. Pure Appl. Math. 63 (2010), no. 7, 831--894. MR2662425
  • Delvaux, Steven; Kuijlaars, Arno B. J.; Zhang, Lun. Critical behavior of nonintersecting Brownian motions at a tacnode. Comm. Pure Appl. Math. 64 (2011), no. 10, 1305--1383. MR2849479
  • Ferrari, Patrik L. Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues. Comm. Math. Phys. 252 (2004), no. 1-3, 77--109. MR2103905
  • Ferrari, Patrik L.; Spohn, Herbert. Step fluctuations for a faceted crystal. J. Statist. Phys. 113 (2003), no. 1-2, 1--46. MR2012974
  • Johansson, Kurt. Non-intersecting paths, random tilings and random matrices. Probab. Theory Related Fields 123 (2002), no. 2, 225--280. MR1900323
  • Johansson, Kurt. Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 (2003), no. 1-2, 277--329. MR2018275
  • Johansson, Kurt. Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Ann. Inst. Fourier (Grenoble) 55 (2005), no. 6, 2129--2145. MR2187949
  • Johansson, Kurt. Random matrices and determinantal processes. Mathematical statistical physics, 1--55, Elsevier B. V., Amsterdam, 2006. MR2581882
  • K. Johansson, phNon-colliding Brownian Motions and the extended tacnode process, ARXIV:1105.4027.
  • Karlin, Samuel; McGregor, James. Coincidence probabilities. Pacific J. Math. 9 1959 1141--1164. MR0114248
  • Katori, Makoto; Tanemura, Hideki. Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45 (2004), no. 8, 3058--3085. MR2077500
  • Katori, Makoto; Tanemura, Hideki. Infinite systems of noncolliding generalized meanders and Riemann-Liouville differintegrals. Probab. Theory Related Fields 138 (2007), no. 1-2, 113--156. MR2288066
  • Lyons, Russell. Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. No. 98 (2003), 167--212. MR2031202
  • T. Nagao and P.J. Forrester, Multilevel dynamical correlation functions for Dyson's Brownian motion model of random matrices, Phys. Lett. A 247 (1998), 42--46.
  • Okounkov, Andrei; Reshetikhin, Nikolai. Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Amer. Math. Soc. 16 (2003), no. 3, 581--603 (electronic). MR1969205
  • Okounkov, Andrei; Reshetikhin, Nicolai. Random skew plane partitions and the Pearcey process. Comm. Math. Phys. 269 (2007), no. 3, 571--609. MR2276355
  • Prähofer, Michael; Spohn, Herbert. Scale invariance of the PNG droplet and the Airy process. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. J. Statist. Phys. 108 (2002), no. 5-6, 1071--1106. MR1933446
  • Sasamoto, T.; Imamura, T. Fluctuations of the one-dimensional polynuclear growth model in half-space. J. Statist. Phys. 115 (2004), no. 3-4, 749--803. MR2054161
  • Encyclopedia of mathematical physics. Vol. 1, 2, 3, 4, 5. Edited by Jean-Pierre Françoise, Gregory L. Naber and Tsou Sheung Tsun. Academic Press/Elsevier Science, Oxford, 2006. Vol. 1: l+679 pp.; Vol. 2: l+729 pp.; Vol 3: l+645 pp.; Vol. 4: l+673 pp.; Vol. 5: l+549 pp. ISBN: 978-0-1251-2660-1; 0-12-512660-3 MR2238867
  • Spohn, Herbert. Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals. Phys. A 369 (2006), no. 1, 71--99. MR2246567
  • Tracy, Craig A.; Widom, Harold. The Pearcey process. Comm. Math. Phys. 263 (2006), no. 2, 381--400. MR2207649
  • Tracy, Craig A.; Widom, Harold. Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1994), no. 1, 151--174. MR1257246


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.