Rates of convergence in the strong invariance principle under projective criteria

Jérôme Dedecker (Université Paris Descartes)
Paul Doukhan (Université Cergy-Pontoise)
Florence Merlevède (Université Paris-Est Marne-la-Vallée)


We give rates of convergence in the strong invariance principle for stationary sequences satisfying some projective criteria. The conditions are expressed in terms of conditional expectations of partial sums of the initial sequence. Our results apply to a large variety of examples. We present some applications to a reversible Markov chain, to symmetric random walks on the circle, and to functions of dependent sequences.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-31

Publication Date: February 28, 2012

DOI: 10.1214/EJP.v17-1849


  • Aue, Alexander; Berkes, István; Horváth, Lajos. Strong approximation for the sums of squares of augmented GARCH sequences. Bernoulli 12 (2006), no. 4, 583--608. MR2248229
  • Berkes, István; Philipp, Walter. Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7 (1979), no. 1, 29--54. MR0515811
  • Bradley, Richard C. Approximation theorems for strongly mixing random variables. Michigan Math. J. 30 (1983), no. 1, 69--81. MR0694930
  • Cuny, Christophe. Almost everywhere convergence of generalized ergodic transforms for invertible power-bounded operators in $L^ p$. Colloq. Math. 124 (2011), no. 1, 61--77. MR2820555
  • Csörgő, Miklós; Horváth, Lajos. Limit theorems in change-point analysis. With a foreword by David Kendall. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 1997. xvi+414 pp. ISBN: 0-471-95522-1 MR2743035
  • Dabrowski, André Robert. A note on a theorem of Berkes and Philipp for dependent sequences. Statist. Probab. Lett. 1 (1982/83), no. 2, 53--55. MR0687971
  • Davydov, Ju. A. Mixing conditions for Markov chains. (Russian) Teor. Verojatnost. i Primenen. 18 (1973), 321--338. MR0321183
  • Dedecker, Jérôme; Doukhan, Paul. A new covariance inequality and applications. Stochastic Process. Appl. 106 (2003), no. 1, 63--80. MR1983043
  • Dedecker, J.; Gouëzel, S.; Merlevède, F. Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 3, 796--821. MR2682267
  • Dedecker, Jérôme; Merlevède, Florence; Peligrad, Magda. Invariance principles for linear processes with application to isotonic regression. Bernoulli 17 (2011), no. 1, 88--113. MR2797983
  • Dedecker, Jérôme; Merlevède, Florence; Rio, Emmanuel. Rates of convergence for minimal distances in the central limit theorem under projective criteria. Electron. J. Probab. 14 (2009), no. 35, 978--1011. MR2506123
  • Dedecker, Jérôme; Prieur, Clémentine. New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields 132 (2005), no. 2, 203--236. MR2199291
  • Dedecker, Jérôme; Rio, Emmanuel. On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), no. 1, 1--34. MR1743095
  • Dedecker, Jérôme; Rio, Emmanuel. On mean central limit theorems for stationary sequences. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 4, 693--726. MR2446294
  • Derriennic, Yves; Lin, Michael. The central limit theorem for Markov chains with normal transition operators, started at a point. Probab. Theory Related Fields 119 (2001), no. 4, 508--528. MR1826405
  • Doukhan, Paul; Massart, Pascal; Rio, Emmanuel. The functional central limit theorem for strongly mixing processes. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 1, 63--82. MR1262892
  • Eberlein, Ernst. On strong invariance principles under dependence assumptions. Ann. Probab. 14 (1986), no. 1, 260--270. MR0815969
  • Gordin, M. I. The central limit theorem for stationary processes. (Russian) Dokl. Akad. Nauk SSSR 188 1969 739--741. MR0251785
  • Gouëzel, Sébastien. Almost sure invariance principle for dynamical systems by spectral methods. Ann. Probab. 38 (2010), no. 4, 1639--1671. MR2663640
  • Hall, P.; Heyde, C. C. Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. xii+308 pp. ISBN: 0-12-319350-8 MR0624435
  • Heyde, C. C. On the central limit theorem for stationary processes. Z. Wahrscheinlichkietstheorie und Verw. Gebiete 30 (1974), 315--320. MR0372955
  • Heyde, C. C. On the central limit theorem and iterated logarithm law for stationary processes. Bull. Austral. Math. Soc. 12 (1975), 1--8. MR0372954
  • Horváth, Lajos; Steinebach, Josef. Testing for changes in the mean or variance of a stochastic process under weak invariance. Prague Workshop on Perspectives in Modern Statistical Inference: Parametrics, Semi-parametrics, Non-parametrics (1998). J. Statist. Plann. Inference 91 (2000), no. 2, 365--376. MR1814790
  • Ibragimov, I. A. Some limit theorems for stationary processes. (Russian) Teor. Verojatnost. i Primenen. 7 1962 361--392. MR0148125
  • Komlós, J.; Major, P.; Tusnády, G. An approximation of partial sums of independent RV's, and the sample DF. II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), no. 1, 33--58. MR0402883
  • Liu, Weidong; Lin, Zhengyan. Strong approximation for a class of stationary processes. Stochastic Process. Appl. 119 (2009), no. 1, 249--280. MR2485027
  • Major, Péter. The approximation of partial sums of independent RV's. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 35 (1976), no. 3, 213--220. MR0415743
  • Merlevède, F. and Peligrad, M.: Rosenthal inequalities for martingales and stationary sequences and examples. phto appear in Ann. Probab. (on line) (2012). ARXIV1103.3242
  • Merlevède, F., Peligrad, C. and Peligrad, M.: Almost Sure Invariance Principles via Martingale Approximation. phStochastic Process. Appl. 122, (2012), 170-190.
  • Merlevède, F. and Rio, E.: Strong approximation of partial sums under dependence conditions with application to dynamical systems. textitStochastic Process. Appl. 122, (2012), 386-417.
  • Peligrad, Magda; Utev, Sergey. A new maximal inequality and invariance principle for stationary sequences. Ann. Probab. 33 (2005), no. 2, 798--815. MR2123210
  • Nummelin, Esa. General irreducible Markov chains and nonnegative operators. Cambridge Tracts in Mathematics, 83. Cambridge University Press, Cambridge, 1984. xi+156 pp. ISBN: 0-521-25005-6 MR0776608
  • Philipp, W. and Stout, W.F.: Almost sure invariance principle for partial sums of weakly dependent random variables. phMem. of the Amer. Math. Soc. 161, (1975), Providence, RI: Amer. Math. Soc. MR0433597
  • Rio, Emmanuel. The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann. Probab. 23 (1995), no. 3, 1188--1203. MR1349167
  • Rio, Emmanuel. Théorie asymptotique des processus aléatoires faiblement dépendants. (French) [Asymptotic theory of weakly dependent random processes] Mathématiques & Applications (Berlin) [Mathematics & Applications], 31. Springer-Verlag, Berlin, 2000. x+169 pp. ISBN: 3-540-65979-X MR2117923
  • Rio, Emmanuel. Moment inequalities for sums of dependent random variables under projective conditions. J. Theoret. Probab. 22 (2009), no. 1, 146--163. MR2472010
  • Rosenblatt, M. A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. U. S. A. 42 (1956), 43--47. MR0074711
  • Rüschendorf, Ludger. The Wasserstein distance and approximation theorems. Z. Wahrsch. Verw. Gebiete 70 (1985), no. 1, 117--129. MR0795791
  • Sakhanenko, A. I. Simple method of obtaining estimates in the invariance principle. Probability theory and mathematical statistics (Kyoto, 1986), 430--443, Lecture Notes in Math., 1299, Springer, Berlin, 1988. MR0936018
  • Schmidt, Wolfgang M. Diophantine approximation. Lecture Notes in Mathematics, 785. Springer, Berlin, 1980. x+299 pp. ISBN: 3-540-09762-7 MR0568710
  • Shao, Qi Man. Almost sure invariance principles for mixing sequences of random variables. Stochastic Process. Appl. 48 (1993), no. 2, 319--334. MR1244549
  • Shao, Qi Man; Lu, Chuan Rong. Strong approximations for partial sums of weakly dependent random variables. Sci. Sinica Ser. A 30 (1987), no. 6, 575--587. MR1000718
  • Strassen, V. An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 1964 211--226 (1964). MR0175194
  • Tuominen, Pekka; Tweedie, Richard L. Subgeometric rates of convergence of $f$-ergodic Markov chains. Adv. in Appl. Probab. 26 (1994), no. 3, 775--798. MR1285459
  • Utev, S. A. Inequalities for sums of weakly dependent random variables and estimates of the rate of convergence in an invariance principle. (Russian) Limit theorems for sums of random variables, 50--77, Trudy Inst. Mat., 3, "Nauka'' Sibirsk. Otdel., Novosibirsk, 1984. MR0749758
  • Wu, Wei Biao. Strong invariance principles for dependent random variables. Ann. Probab. 35 (2007), no. 6, 2294--2320. MR2353389
  • Wu, Wei Biao; Zhao, Zhibiao. Inference of trends in time series. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 (2007), no. 3, 391--410. MR2323759
  • Wu, Wei Biao; Zhao, Zhibiao. Moderate deviations for stationary processes. Statist. Sinica 18 (2008), no. 2, 769--782. MR2411619
  • Zhao, Ou; Woodroofe, Michael. Law of the iterated logarithm for stationary processes. Ann. Probab. 36 (2008), no. 1, 127--142. MR2370600

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.