Download this PDF file Fullscreen Fullscreen Off
References
- Benachour, S.; Roynette, B.; Talay, D.; Vallois, P. Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stochastic Process. Appl. 75 (1998), no. 2, 173--201. MR1632193
- Benachour, S.; Roynette, B.; Vallois, P. Nonlinear self-stabilizing processes. II. Convergence to invariant probability. Stochastic Process. Appl. 75 (1998), no. 2, 203--224. MR1632197
- Cattiaux, P.; Guillin, A.; Malrieu, F. Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Related Fields 140 (2008), no. 1-2, 19--40. MR2357669
- Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications. Corrected reprint of the second (1998) edition. Stochastic Modelling and Applied Probability, 38. Springer-Verlag, Berlin, 2010. xvi+396 pp. ISBN: 978-3-642-03310-0 MR2571413
- Freidlin, M. I.; Wentzell, A. D. Random perturbations of dynamical systems. Translated from the 1979 Russian original by Joseph Szücs. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 260. Springer-Verlag, New York, 1998. xii+430 pp. ISBN: 0-387-98362-7 MR1652127
- Herrmann, Samuel; Imkeller, Peter; Peithmann, Dierk. Large deviations and a Kramers' type law for self-stabilizing diffusions. Ann. Appl. Probab. 18 (2008), no. 4, 1379--1423. MR2434175
- Herrmann, S.; Tugaut, J. Non-uniqueness of stationary measures for self-stabilizing processes. Stochastic Process. Appl. 120 (2010), no. 7, 1215--1246. MR2639745
- Herrmann, S.; Tugaut, J. Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit. Electron. J. Probab. 15 (2010), no. 69, 2087--2116. MR2745727
- S. Herrmann and J. Tugaut: Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small noise limit. To appear in ESAIM Probability and statistics, 2012.
- Imkeller, Peter; Pavlyukevich, Ilya; Stauch, Michael. First exit times of non-linear dynamical systems in $\Bbb R^ d$ perturbed by multifractal Lévy noise. J. Stat. Phys. 141 (2010), no. 1, 94--119. MR2720045
- Imkeller, Peter; Pavlyukevich, Ilya; Wetzel, Torsten. First exit times for Lévy-driven diffusions with exponentially light jumps. Ann. Probab. 37 (2009), no. 2, 530--564. MR2510016
- Malrieu, F. Logarithmic Sobolev inequalities for some nonlinear PDE's. Stochastic Process. Appl. 95 (2001), no. 1, 109--132. MR1847094
- Malrieu, Florent. Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13 (2003), no. 2, 540--560. MR1970276
- McKean, H. P., Jr. Propagation of chaos for a class of non-linear parabolic equations. 1967 Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967) pp. 41--57 Air Force Office Sci. Res., Arlington, Va. MR0233437
- Sznitman, Alain-Sol. Topics in propagation of chaos. École d'Été de Probabilités de Saint-Flour XIX—1989, 165--251, Lecture Notes in Math., 1464, Springer, Berlin, 1991. MR1108185
- J. Tugaut: Convergence to the equilibria for self-stabilizing processes in double well landscape. To appear in The Annals of Probability, 2010.
- Tugaut, J.: Self-stabilizing processes in multi-wells landscape in mathbbR^d - Invariant probabilities. To appear in Journal of Theoretical Probability, 2011.
- J. Tugaut: Self-stabilizing processes in multi-wells landscape in mathbbR^d - Convergence. available on http://hal.archives-ouvertes.fr/hal-00628086/fr/, 2011
- J. Tugaut: Captivity of mean-field systems. available on http://hal.archives-ouvertes.fr/hal-00573047/fr/, 2011.

This work is licensed under a Creative Commons Attribution 3.0 License.