The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Bardou, Olivier; Bouthemy, Sandrine; Pagès, Gilles. When are swing options bang-bang? Int. J. Theor. Appl. Finance 13 (2010), no. 6, 867--899. MR2718983
  • Barles, Guy; Jakobsen, Espen R. Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations. Math. Comp. 76 (2007), no. 260, 1861--1893 (electronic). MR2336272
  • Barles, G.; Souganidis, P. E. Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991), no. 3, 271--283. MR1115933
  • Bonnans, J. Frédéric; Ottenwaelter, Élisabeth; Zidani, Housnaa. A fast algorithm for the two dimensional HJB equation of stochastic control. M2AN Math. Model. Numer. Anal. 38 (2004), no. 4, 723--735. MR2087732
  • Bouchard, Bruno; Touzi, Nizar. Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stochastic Process. Appl. 111 (2004), no. 2, 175--206. MR2056536
  • B. Bouchard and X. Warin, Monte-Carlo valorisation of American options: facts and new algorithms to improve existing methods, preprint, 2011.
  • J.F. Bonnans, Z. Cen and T. Christel, Energy contracts management by stochastic programming techniques, to appear in special issue of "Annals of Operations Research" on "stochastic programming".
  • Chen, Zhuliang; Forsyth, Peter A. A semi-Lagrangian approach for natural gas storage valuation and optimal operation. SIAM J. Sci. Comput. 30 (2007/08), no. 1, 339--368. MR2377445
  • Cheridito, Patrick; Soner, H. Mete; Touzi, Nizar; Victoir, Nicolas. Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Comm. Pure Appl. Math. 60 (2007), no. 7, 1081--1110. MR2319056
  • D. Crisan, and K. Manolarakis, Solving Backward Stochastic Differential Equations using the Cubature Method, preprint, 2011.
  • Dai, Min; Kwok, Yue Kuen; Zong, Jianping. Guaranteed minimum withdrawal benefit in variable annuities. Math. Finance 18 (2008), no. 4, 595--611. MR2454673
  • K. Debrabant and E.R. Jakobsen, Semi-Lagrangian schemes for linear and fully nonlinear diffusion equations, preprint, 2009.
  • Fahim, Arash; Touzi, Nizar; Warin, Xavier. A probabilistic numerical method for fully nonlinear parabolic PDEs. Ann. Appl. Probab. 21 (2011), no. 4, 1322--1364. MR2857450
  • Gobet, Emmanuel; Lemor, Jean-Philippe; Warin, Xavier. A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15 (2005), no. 3, 2172--2202. MR2152657
  • F.A. Longstaff and R.S. Schwartz, Valuing American options by simulation: a simple least-square approach, Review of Finnaical studies, 14:113-147, 2001.
  • A. Porchet, Problems of Valuation and Organization in Energy Markets, PhD Dissertation, Université Paris Dauphine, 2008.
  • Rogers, L. C. G.; Shi, Z. The value of an Asian option. J. Appl. Probab. 32 (1995), no. 4, 1077--1088. MR1363350
  • H.M. Soner, N. Touzi and J. Zhang, Wellposedness of second order backward SDEs, Probability Theory and Related Fields, to appear.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.