The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Berestycki, Julien; Berestycki, Nathanaël. Kingman's coalescent and Brownian motion. ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009), 239--259. MR2534485
  • Berestycki, Nathanaël. Recent progress in coalescent theory. Ensaios Matemáticos [Mathematical Surveys], 16. Sociedade Brasileira de Matemática, Rio de Janeiro, 2009. 193 pp. ISBN: 978-85-85818-40-1 MR2574323
  • Bertoin, Jean. Random fragmentation and coagulation processes. Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006. viii+280 pp. ISBN: 978-0-521-86728-3; 0-521-86728-2 MR2253162
  • Bertoin, Jean; Le Gall, Jean-François. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 (2000), no. 2, 249--266. MR1771663
  • Bertoin, Jean; Le Gall, Jean-François. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003), no. 2, 261--288. MR1990057
  • Bertoin, Jean; Le Gall, Jean-Francois. Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006), no. 1-4, 147--181 (electronic). MR2247827
  • Birkner, Matthias; Blath, Jochen; Capaldo, Marcella; Etheridge, Alison; Möhle, Martin; Schweinsberg, Jason; Wakolbinger, Anton. Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 (2005), no. 9, 303--325 (electronic). MR2120246
  • Dawson, Donald A. Measure-valued Markov processes. École d'Été de Probabilités de Saint-Flour XXI—1991, 1--260, Lecture Notes in Math., 1541, Springer, Berlin, 1993. MR1242575
  • Duquesne, Thomas. Continuum random trees and branching processes with immigration. Stochastic Process. Appl. 119 (2009), no. 1, 99--129. MR2485021
  • Etheridge, Alison M. An introduction to superprocesses. University Lecture Series, 20. American Mathematical Society, Providence, RI, 2000. xii+187 pp. ISBN: 0-8218-2706-5 MR1779100
  • Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085
  • Fitzsimmons, P. J.; Fristedt, Bert; Shepp, L. A. The set of real numbers left uncovered by random covering intervals. Z. Wahrsch. Verw. Gebiete 70 (1985), no. 2, 175--189. MR0799145
  • Foucart, Clément. Distinguished exchangeable coalescents and generalized Fleming-Viot processes with immigration. Adv. in Appl. Probab. 43 (2011), no. 2, 348--374. MR2848380
  • C. Foucart. Generalized Fleming-Viot processes with immigration via stochastic flows of partitions. Hal preprint-to appear, 2012.
  • K. Handa. Stationary distributions for a class of generalized Fleming-Viot processes. ArXiv e-prints, May 2012.
  • Kawazu, Kiyoshi; Watanabe, Shinzo. Branching processes with immigration and related limit theorems. Teor. Verojatnost. i Primenen. 16 1971 34--51. MR0290475
  • Kyprianou, A. E.; Pardo, J. C. Continuous-state branching processes and self-similarity. J. Appl. Probab. 45 (2008), no. 4, 1140--1160. MR2484167
  • Lambert, Amaury. The genealogy of continuous-state branching processes with immigration. Probab. Theory Related Fields 122 (2002), no. 1, 42--70. MR1883717
  • Lambert, Amaury. Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Probab. 12 (2007), no. 14, 420--446. MR2299923
  • Li, Zenghu. Measure-valued branching Markov processes. Probability and its Applications (New York). Springer, Heidelberg, 2011. xii+350 pp. ISBN: 978-3-642-15003-6 MR2760602
  • Perkins, Edwin A. Conditional Dawson-Watanabe processes and Fleming-Viot processes. Seminar on Stochastic Processes, 1991 (Los Angeles, CA, 1991), 143--156, Progr. Probab., 29, Birkhäuser Boston, Boston, MA, 1992. MR1172149
  • Sharpe, Michael. General theory of Markov processes. Pure and Applied Mathematics, 133. Academic Press, Inc., Boston, MA, 1988. xii+419 pp. ISBN: 0-12-639060-6 MR0958914
  • Shiga, Tokuzo. A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes. J. Math. Kyoto Univ. 30 (1990), no. 2, 245--279. MR1068791
  • Volkonskiĭ, V. A. Random substitution of time in strong Markov processes. (Russian) Teor. Veroyatnost. i Primenen 3 1958 332--350. MR0100919

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.