The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Baryshnikov, Yu.; Yukich, J. E. Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15 (2005), no. 1A, 213--253. MR2115042
  • Bhattacharya, Rabi N.; Ghosh, Jayanta K. A class of $U$-statistics and asymptotic normality of the number of $k$-clusters. J. Multivariate Anal. 43 (1992), no. 2, 300--330. MR1193616
  • Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1989. xx+494 pp. ISBN: 0-521-37943-1 MR1015093
  • Blei, R.; Janson, S. Rademacher chaos: tail estimates versus limit theorems. Ark. Mat. 42 (2004), no. 1, 13--29. MR2056543
  • Clark, B. N.; Colbourn, C. J.; Johnson, David S. Unit disk graphs. Discrete Math. 86 (1990), no. 1-3, 165--177. MR1088569
  • Decreusefond, L.; Ferraz, E. On the one dimensional Poisson random geometric graph. J. Probab. Stat. 2011, Art. ID 350382, 21 pp. MR2842939
  • Ferraz E. ; Vergne A. (2011). Statistics of geometric random simplicial complexes. Preprint.
  • Heinrich, L.; Schmidt, H.; Schmidt, V. Central limit theorems for Poisson hyperplane tessellations. Ann. Appl. Probab. 16 (2006), no. 2, 919--950. MR2244437
  • Jammalamadaka, S. R.; Janson, S. Limit theorems for a triangular scheme of $U$-statistics with applications to inter-point distances. Ann. Probab. 14 (1986), no. 4, 1347--1358. MR0866355
  • Lachièze-Rey, R. Concave majorant of stochastic processes and Burgers turbulence. J. Theoret. Probab. 25 (2012), no. 2, 313--332. MR2914431
  • Last, G.; Penrose, M. D. Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Related Fields 150 (2011), no. 3-4, 663--690. MR2824870
  • Last G., Penrose M. D., Schulte M. and Thaele C. (2012). Moments and central limit theorems for some multivariate Poisson functionals. Preprint.
  • New perspectives in stochastic geometry. Edited by Wilfrid S. Kendall and Ilya Molchanov. Oxford University Press, Oxford, 2010. xx+585 pp. ISBN: 978-0-19-923257-4 MR2668353
  • McDiarmid, C. Random channel assignment in the plane. Random Structures Algorithms 22 (2003), no. 2, 187--212. MR1954610
  • N.T. Minh . Malliavin-Stein method for multi-dimensional U-statistics of Poisson point processes (2011). Preprint.
  • Müller, T. Two-point concentration in random geometric graphs. Combinatorica 28 (2008), no. 5, 529--545. MR2501248
  • Nourdin, I.; Peccati, G. Stein's method on Wiener chaos. Probab. Theory Related Fields 145 (2009), no. 1-2, 75--118. MR2520122
  • Nourdin, I.; Peccati, G. Normal approximations with Malliavin calculus. From Stein's method to universality. Cambridge Tracts in Mathematics, 192. Cambridge University Press, Cambridge, 2012. xiv+239 pp. ISBN: 978-1-107-01777-1 MR2962301
  • Nourdin, I.; Peccati, G.; Reinert, G. Stein's method and stochastic analysis of Rademacher functionals. Electron. J. Probab. 15 (2010), no. 55, 1703--1742. MR2735379
  • Nualart, D.; Peccati, G. Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005), no. 1, 177--193. MR2118863
  • Nualart, D.; Vives, J. Anticipative calculus for the Poisson process based on the Fock space. Séminaire de Probabilités, XXIV, 1988/89, 154--165, Lecture Notes in Math., 1426, Springer, Berlin, 1990. MR1071538
  • Peccati, G.; Taqqu, M. S. Central limit theorems for double Poisson integrals. Bernoulli 14 (2008), no. 3, 791--821. MR2537812
  • Peccati, G.; Taqqu, M. S. Wiener chaos: moments, cumulants and diagrams. A survey with computer implementation. Supplementary material available online. Bocconi & Springer Series, 1. Springer, Milan; Bocconi University Press, Milan, 2011. xiv+274 pp. ISBN: 978-88-470-1678-1 MR2791919
  • Peccati G. (2011). The Chen-Stein method for Poisson functionals. Preprint.
  • Peccati, G.; Solé, J. L.; Taqqu, M. S.; Utzet, F. Stein's method and normal approximation of Poisson functionals. Ann. Probab. 38 (2010), no. 2, 443--478. MR2642882
  • Peccati, G.; Zheng, C. Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15 (2010), no. 48, 1487--1527. MR2727319
  • Peccati G. and Zheng C. (2011). Universal Gaussian fluctuations on the discrete Poisson chaos. To appear in Bernoulli.
  • Penrose, M. Random geometric graphs. Oxford Studies in Probability, 5. Oxford University Press, Oxford, 2003. xiv+330 pp. ISBN: 0-19-850626-0 MR1986198
  • Penrose, M. D.; Yukich, J. E. Normal approximation in geometric probability. Stein's method and applications, 37--58, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 5, Singapore Univ. Press, Singapore, 2005. MR2201885
  • Reitzner M. ; Schulte M. (2011). Central Limit Theorems for U-Statistics of Poisson Point Processes. To appear in: Ann. Probab.
  • Schneider, R.; Weil, W. Stochastic and integral geometry. Probability and its Applications (New York). Springer-Verlag, Berlin, 2008. xii+693 pp. ISBN: 978-3-540-78858-4 MR2455326
  • Schulte M.(2011). A Central Limit Theorem for the Poisson-Voronoi Approximation. Advances in Applied Mathematics 49, 285-306.
  • Schulte M. ; Thaele and C. (2010). Exact and asymptotic results for intrinsic volumes of Poisson k-flat processes. Preprint.
  • Schulte, M.; Thäle, C. The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stochastic Process. Appl. 122 (2012), no. 12, 4096--4120. MR2971726
  • Silverman, B.; Brown, T. Short distances, flat triangles and Poisson limits. J. Appl. Probab. 15 (1978), no. 4, 815--825. MR0511059
  • Surgailis, D. On multiple Poisson stochastic integrals and associated Markov semigroups. Probab. Math. Statist. 3 (1984), no. 2, 217--239. MR0764148

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.