The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Addario-Berry, Louigi; Reed, Bruce. Minima in branching random walks. Ann. Probab. 37 (2009), no. 3, 1044--1079. MR2537549
  • E. Aïdékon: Convergence in law of the minimum of a branching random walk, ARXIV1101.1810v3
  • Alon, Noga; Spencer, Joel H. The probabilistic method. Third edition. With an appendix on the life and work of Paul Erdős. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, 2008. xviii+352 pp. ISBN: 978-0-470-17020-5 MR2437651
  • Berestycki, J.; Brunet, É.; Harris, J. W.; Harris, S. C. The almost-sure population growth rate in branching Brownian motion with a quadratic breeding potential. Statist. Probab. Lett. 80 (2010), no. 17-18, 1442--1446. MR2669786
  • J. Berestycki, É. Brunet, J. W. Harris, S. C. Harris, and M. I. Roberts: Growth rates of the population in a branching Brownian motion with an inhomogeneous breeding potential, ARXIV1203.0513
  • Bramson, Maury D. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 (1978), no. 5, 531--581. MR0494541
  • Bramson, Maury D. Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete 45 (1978), no. 2, 89--108. MR0510529
  • Bramson, Maury; Zeitouni, Ofer. Tightness for a family of recursion equations. Ann. Probab. 37 (2009), no. 2, 615--653. MR2510018
  • Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications. Second edition. Applications of Mathematics (New York), 38. Springer-Verlag, New York, 1998. xvi+396 pp. ISBN: 0-387-98406-2 MR1619036
  • L. Doering and M.I. Roberts: Catalytic branching processes via spine techniques and renewal theory, ARXIV1106.5428v4
  • Durrett, Rick. Probability: theory and examples. Fourth edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. x+428 pp. ISBN: 978-0-521-76539-8 MR2722836
  • Engländer, János; Harris, Simon C.; Kyprianou, Andreas E. Strong law of large numbers for branching diffusions. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 1, 279--298. MR2641779
  • M. Fang: Tightness for maxima of generalized branching random walks. phJournal of Applied Probability, 49(3), (2012).
  • M. Fang and O. Zeitouni: Slowdown for time inhomogeneous branching brownian motion, ARXIV1205.1769
  • Gantert, Nina; Müller, Sebastian; Popov, Serguei; Vachkovskaia, Marina. Survival of branching random walks in random environment. J. Theoret. Probab. 23 (2010), no. 4, 1002--1014. MR2735734
  • Git, Y.; Harris, J. W.; Harris, S. C. Exponential growth rates in a typed branching diffusion. Ann. Appl. Probab. 17 (2007), no. 2, 609--653. MR2308337
  • Greven, Andreas; den Hollander, Frank. Branching random walk in random environment: phase transitions for local and global growth rates. Probab. Theory Related Fields 91 (1992), no. 2, 195--249. MR1147615
  • Harris, J. W.; Harris, S. C. Branching Brownian motion with an inhomogeneous breeding potential. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), no. 3, 793--801. MR2548504
  • S. C. Harris and M. I. Roberts: The many-to-few lemma and multiple spines, ARXIV1106.4761
  • Harris, S. C.; Williams, D. Large deviations and martingales for a typed branching diffusion. I. Hommage à P. A. Meyer et J. Neveu. Astérisque No. 236 (1996), 133--154. MR1417979
  • Heil, Hadrian; Nakashima, Makoto; Yoshida, Nobuo. Branching random walks in random environment are diffusive in the regular growth phase. Electron. J. Probab. 16 (2011), no. 48, 1316--1340. MR2827461
  • Hu, Yueyun; Yoshida, Nobuo. Localization for branching random walks in random environment. Stochastic Process. Appl. 119 (2009), no. 5, 1632--1651. MR2513122
  • L. Koralov: Branching diffusion in inhomogeneous media, ARXIV1107.1159
  • Lau, Ka-Sing. On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov. J. Differential Equations 59 (1985), no. 1, 44--70. MR0803086
  • Q. Liu: Branching random walks in random environment. phICCM 2, (2007), 702--719.
  • Machado, F. P.; Popov, S. Yu. One-dimensional branching random walks in a Markovian random environment. J. Appl. Probab. 37 (2000), no. 4, 1157--1163. MR1808881
  • Nakashima, Makoto. Almost sure central limit theorem for branching random walks in random environment. Ann. Appl. Probab. 21 (2011), no. 1, 351--373. MR2759206
  • Nolen, James; Ryzhik, Lenya. Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 3, 1021--1047. MR2526414
  • M. I. Roberts: A simple path to asymptotics for the frontier of a branching Brownian motion, to appear in Annals Probab., ARXIV1106.4771

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.