The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Bakry, Dominique. L'hypercontractivité et son utilisation en théorie des semigroupes. (French) [Hypercontractivity and its use in semigroup theory] Lectures on probability theory (Saint-Flour, 1992), 1--114, Lecture Notes in Math., 1581, Springer, Berlin, 1994. MR1307413
  • Bakry, D.; Émery, Michel. Diffusions hypercontractives. (French) [Hypercontractive diffusions] Séminaire de probabilités, XIX, 1983/84, 177--206, Lecture Notes in Math., 1123, Springer, Berlin, 1985. MR0889476
  • Berezanskiĭ, Yu. M.; Kondratʹev, Yu. G. \cyr Spektralʹnye metody v beskonechnomernom analize. (Russian) [Spectral methods in infinite-dimensional analysis] ``Naukova Dumka'', Kiev, 1988. 680 pp. ISBN: 5-12-009292-- MR0978630
  • Bertini, Lorenzo; Cancrini, Nicoletta; Cesi, Filippo. The spectral gap for a Glauber-type dynamics in a continuous gas. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 1, 91--108. MR1899231
  • Boudou, Anne-Severine; Caputo, Pietro; Dai Pra, Paolo; Posta, Gustavo. Spectral gap estimates for interacting particle systems via a Bochner-type identity. J. Funct. Anal. 232 (2006), no. 1, 222--258. MR2200172
  • Choi, Veni; Park, Yong Moon; Yoo, Hyun Jae. Dirichlet forms and Dirichlet operators for infinite particle systems: essential self-adjointness. J. Math. Phys. 39 (1998), no. 12, 6509--6536. MR1656961
  • Finkelshtein, Dmitri; Kondratiev, Yuri; Kutoviy, Oleksandr; Zhizhina, Elena. An approximative approach for construction of the Glauber dynamics in continuum. Math. Nachr. 285 (2012), no. 2-3, 223--235. MR2881277
  • Fritz, J. Gradient dynamics of infinite point systems. Ann. Probab. 15 (1987), no. 2, 478--514. MR0885128
  • M. Fukushima, Dirichlet Forms and Symmetric Markov Processes, North-Holland, 1980.
  • Glötzl, Erhard. Time reversible and Gibbsian point processes. I. Markovian spatial birth and death processes on a general phase space. Math. Nachr. 102 (1981), 217--222. MR0642153
  • Jacob, N. Pseudo differential operators and Markov processes. Vol. I. Fourier analysis and semigroups. Imperial College Press, London, 2001. xxii+493 pp. ISBN: 1-86094-293-8 MR1873235
  • Kondratʹev, Yu. G. Dirichlet operators and the smoothness of solutions of infinite-dimensional elliptic equations. (Russian) Dokl. Akad. Nauk SSSR 282 (1985), no. 2, 269--273. MR0788994
  • Kondratiev, Yuri; Kutoviy, Oleksandr; Minlos, Robert. Ergodicity of non-equilibrium Glauber dynamics in continuum. J. Funct. Anal. 258 (2010), no. 9, 3097--3116. MR2595736
  • Kondratiev, Yuri; Kutoviy, Oleksandr; Minlos, Robert. On non-equilibrium stochastic dynamics for interacting particle systems in continuum. J. Funct. Anal. 255 (2008), no. 1, 200--227. MR2417815
  • Kondratiev, Yuri G.; Kutoviy, Oleksandr V.; Zhizhina, Elena. Nonequilibrium Glauber-type dynamics in continuum. J. Math. Phys. 47 (2006), no. 11, 113501, 17 pp. MR2278662
  • Kondratiev, Yuri; Lytvynov, Eugene. Glauber dynamics of continuous particle systems. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 4, 685--702. MR2144229
  • Yu.G.Kondratiev, R.A.Minlos, and E. Zhizhina, One-particle subspaces of the generator of Glauber dynamics of continuous particle systems, Rev. Math. Phys. 16, (2004), 1–-42.
  • Lytvynov, Eugene; Ohlerich, Nataliya. A note on equilibrium Glauber and Kawasaki dynamics for fermion point processes. Methods Funct. Anal. Topology 14 (2008), no. 1, 67--80. MR2402154
  • Ledoux, Michel. Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités, XXXIII, 120--216, Lecture Notes in Math., 1709, Springer, Berlin, 1999. MR1767995
  • Ma, Zhi Ming; Röckner, Michael. Introduction to the theory of (nonsymmetric) Dirichlet forms. Universitext. Springer-Verlag, Berlin, 1992. vi+209 pp. ISBN: 3-540-55848-9 MR1214375
  • Preston, Chris. Spatial birth-and-death processes. With discussion. Proceedings of the 40th Session of the International Statistical#Institute (Warsaw, 1975), Vol. 2. Invited papers. Bull. Inst. Internat. Statist. 46 (1975), no. 2, 371--391, 405--408 (1975). MR0474532
  • Ruelle, David. Statistical mechanics: Rigorous results. W. A. Benjamin, Inc., New York-Amsterdam 1969 xi+219 pp. MR0289084
  • Ruelle, D. Superstable interactions in classical statistical mechanics. Comm. Math. Phys. 18 1970 127--159. MR0266565

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.