The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Alili, Larbi; Chaumont, Loïc. A new fluctuation identity for Lévy processes and some applications. Bernoulli 7 (2001), no. 3, 557-569. MR1836746
  • Alili, L.; Doney, R. A. Wiener-Hopf factorization revisited and some applications. Stochastics Stochastics Rep. 66 (1999), no. 1-2, 87-102. MR1687803
  • Asmussen, Søren; Foss, Serguei; Korshunov, Dmitry. Asymptotics for sums of random variables with local subexponential behaviour. J. Theoret. Probab. 16 (2003), no. 2, 489-518. MR1982040
  • Bertoin, Jean. Lévy processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564
  • Bertoin, Jean. Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stochastic Process. Appl. 47 (1993), no. 1, 17-35. MR1232850
  • Bertoin, J.; Doney, R. A. On conditioning a random walk to stay nonnegative. Ann. Probab. 22 (1994), no. 4, 2152-2167. MR1331218
  • Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9 MR1700749
  • Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1989. xx+494 pp. ISBN: 0-521-37943-1 MR1015093
  • Bolthausen, Erwin. On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probability 4 (1976), no. 3, 480-485. MR0415702
  • Bryn-Jones, A.; Doney, R. A. A functional limit theorem for random walk conditioned to stay non-negative. J. London Math. Soc. (2) 74 (2006), no. 1, 244-258. MR2254563
  • Caravenna, Francesco. A local limit theorem for random walks conditioned to stay positive. Probab. Theory Related Fields 133 (2005), no. 4, 508-530. MR2197112
  • F. Caravenna, A note on directly Riemann integrable functions, arXiv:1210.2361.
  • Caravenna, Francesco; Chaumont, Loïc. Invariance principles for random walks conditioned to stay positive. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 1, 170-190. MR2451576
  • Caravenna, Francesco; Giacomin, Giambattista; Zambotti, Lorenzo. A renewal theory approach to periodic copolymers with adsorption. Ann. Appl. Probab. 17 (2007), no. 4, 1362-1398. MR2344310
  • Caravenna, Francesco; Giacomin, Giambattista; Zambotti, Lorenzo. Sharp asymptotic behavior for wetting models in $(1+1)$-dimension. Electron. J. Probab. 11 (2006), no. 14, 345-362 (electronic). MR2217821
  • Chaumont, L. Excursion normalisée, méandre et pont pour les processus de Lévy stables. (French) [Normalized excursion, meander and bridge for stable Levy processes] Bull. Sci. Math. 121 (1997), no. 5, 377-403. MR1465814
  • Chaumont, L.; Doney, R. A. On Lévy processes conditioned to stay positive. Electron. J. Probab. 10 (2005), no. 28, 948-961. MR2164035
  • Chaumont, L.; Doney, R. A. Invariance principles for local times at the maximum of random walks and Lévy processes. Ann. Probab. 38 (2010), no. 4, 1368-1389. MR2663630
  • Doney, R. A. Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete 70 (1985), no. 3, 351-360. MR0803677
  • Doney, R. A.; Greenwood, P. E. On the joint distribution of ladder variables of random walk. Probab. Theory Related Fields 94 (1993), no. 4, 457-472. MR1201554
  • Doney, R. A. Local behaviour of first passage probabilities. Probab. Theory Related Fields 152 (2012), no. 3-4, 559-588. MR2892956
  • Doney, R. A.; Savov, M. S. The asymptotic behavior of densities related to the supremum of a stable process. Ann. Probab. 38 (2010), no. 1, 316-326. MR2599201
  • Donsker, Monroe D. An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc., 1951, (1951). no. 6, 12 pp. MR0040613
  • Èppelʹ, M. S. A local limit theorem for the first passage time. (Russian) Sibirsk. Mat. Zh. 20 (1979), no. 1, 181-191, 207. MR0523146
  • W. Feller, textitAn Introduction to Probability Theory and Its Applications, vol. 2, 2nd ed. (1971), John Wiley and Sons, New York. MR0270403 MR0270403
  • Fitzsimmons, Pat; Pitman, Jim; Yor, Marc. Markovian bridges: construction, Palm interpretation, and splicing. Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), 101--134, Progr. Probab., 33, Birkhäuser Boston, Boston, MA, 1993. MR1278079
  • Giacomin, Giambattista. Random polymer models. Imperial College Press, London, 2007. xvi+242 pp. ISBN: 978-1-86094-786-5; 1-86094-786-7 MR2380992
  • Giacomin, Giambattista. Disorder and critical phenomena through basic probability models. Lecture notes from the 40th Probability Summer School held in Saint-Flour, 2010. Lecture Notes in Mathematics, 2025. École d'Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School] Springer, Heidelberg, 2011. xii+130 pp. ISBN: 978-3-642-21155-3 MR2816225
  • P. E. Greenwood, E. Omey and J. L. Teugels, textitHarmonic renewal measures and bivariate domains of attraction in fluctuation theory, J. Aust. Math. Soc., Ser. A 32 (1982), 412-422. MR0682578
  • Gnedenko, B. V.; Kolmogorov, A. N. Limit distributions for sums of independent random variables. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1954. ix+264 pp. MR0062975
  • den Hollander, Frank. Random polymers. Lectures from the 37th Probability Summer School held in Saint-Flour, 2007. Lecture Notes in Mathematics, 1974. Springer-Verlag, Berlin, 2009. xiv+258 pp. ISBN: 978-3-642-00332-5 MR2504175
  • Iglehart, Donald L. Functional central limit theorems for random walks conditioned to stay positive. Ann. Probability 2 (1974), 608-619. MR0362499
  • Kaigh, W. D. An invariance principle for random walk conditioned by a late return to zero. Ann. Probability 4 (1976), no. 1, 115-121. MR0415706
  • Kozlov, M. V. The asymptotic behavior of the probability of non-extinction of critical branching processes in a random environment. (Russian) Teor. Verojatnost. i Primenen. 21 (1976), no. 4, 813-825. MR0428492
  • Liggett, Thomas M. An invariance principle for conditioned sums of independent random variables. J. Math. Mech. 18 1968 559-570. MR0238373
  • Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357
  • B. A. Rogozin, textitThe Distribution of the First Ladder Moment and Height and Fluctuation of a Random Walk, Theory Probab. Appl. 21 (1976), 575-595. MR0290473
  • Ya. G. Sinai, textitOn the Distribution of the First Positive Sum for a Sequence of Independent Random Variables, Theory Probab. Appl. 2 (1957), 122-129.
  • J. Sohier, textitA functional limit convergence towards brownian excursion, arXiv:1012.0118.
  • Skorohod, A. V. Limit theorems for stochastic processes with independent increments. (Russian) Teor. Veroyatnost. i Primenen. 2 1957 145--177. MR0094842
  • G. Uribe Bravo, textitBridges of Lévy processes conditioned to stay positive, Bernoulli (to appear), arXiv:1101.4184.
  • Vatutin, Vladimir A.; Wachtel, Vitali. Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields 143 (2009), no. 1-2, 177-217. MR2449127

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.