The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Aldous, David. On simulating a Markov chain stationary distribution when transition probabilities are unknown. Discrete probability and algorithms (Minneapolis, MN, 1993), 1--9, IMA Vol. Math. Appl., 72, Springer, New York, 1995. MR1380517
  • Ball, Frank. The threshold behaviour of epidemic models. J. Appl. Probab. 20 (1983), no. 2, 227--241. MR0698527
  • Ball, Frank; Donnelly, Peter. Strong approximations for epidemic models. Stochastic Process. Appl. 55 (1995), no. 1, 1--21. MR1312145
  • Barbour, A. D.; Holst, Lars; Janson, Svante. Poisson approximation. Oxford Studies in Probability, 2. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992. x+277 pp. ISBN: 0-19-852235-5 MR1163825
  • Barbour, A. D. and Reinert, G.: Asymptotic behaviour of gossip processes and small world networks. Appl. Probab. (to appear), ARXIV1202.5895.
  • Bhamidi, S., van der Hofstad, R. and G. Hooghiemstra, G.: Universality for first passage percolation on sparse random graphs, ARXIV1210.6839.
  • Brauer, Fred. The Kermack-McKendrick epidemic model revisited. Math. Biosci. 198 (2005), no. 2, 119--131. MR2187870
  • Brauer, Fred; Castillo-Chavez, Carlos. Mathematical models in population biology and epidemiology. Second edition. Texts in Applied Mathematics, 40. Springer, New York, 2012. xxiv+508 pp. ISBN: 978-1-4614-1685-2; 978-1-4614-1686-9 MR3024808
  • Decreusefond, Laurent; Dhersin, Jean-Stéphane; Moyal, Pascal; Tran, Viet Chi. Large graph limit for an SIR process in random network with heterogeneous connectivity. Ann. Appl. Probab. 22 (2012), no. 2, 541--575. MR2953563
  • Diekmann, O. Limiting behaviour in an epidemic model. Nonlinear Anal. 1 (1976/77), no. 5, 459--470. MR0624451
  • Diekmann, Odo; Heesterbeek, J. A. P. Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation. Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2000. xvi+303 pp. ISBN: 0-471-49241-8 MR1882991
  • Gupta, S.D., Lal, V., Jain, R. and Gupta, O. P.: Modeling of H1N1 Outbreak in Rajasthan: Methods and Approaches. Indian J. Community Med. 36, (2011), 36--38.
  • Jagers, Peter. Branching processes with biological applications. Wiley Series in Probability and Mathematical Statistics—Applied Probability and Statistics. Wiley-Interscience [John Wiley & Sons], London-New York-Sydney, 1975. xiii+268 pp. ISBN: 0-471-43652-6 MR0488341
  • Jagers, Peter. General branching processes as Markov fields. Stochastic Process. Appl. 32 (1989), no. 2, 183--212. MR1014449
  • Kendall, David G. Deterministic and stochastic epidemics in closed populations. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. IV, pp. 149--165. University of California Press, Berkeley and Los Angeles, 1956. MR0084936
  • Kermack, W. O. and McKendrick, A. G.: Contributions to the mathematical theory of epidemics, part~I. Proc. Roy. Soc. Edin. A/ 115, (1927), 700--721; Bull. Math. Biol./ 53, (1991), 33--55.
  • Massart, P. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990), no. 3, 1269--1283. MR1062069
  • McDiarmid, Colin. Concentration. Probabilistic methods for algorithmic discrete mathematics, 195--248, Algorithms Combin., 16, Springer, Berlin, 1998. MR1678578
  • Metz, J. A. J.: The epidemic in a closed population with all susceptibles equally vulnerable; some results for large susceptible populations and small initial infections. Acta Biotheor. 27, (1978), 75--123.
  • Miller, Joel C. A note on a paper by Erik Volz: SIR dynamics in random networks [ MR2358436]. J. Math. Biol. 62 (2011), no. 3, 349--358. MR2771177
  • Moore, C. and Newman, M. E. J.: Epidemics and percolation in small-world networks. Phys. Rev. E~61, (2000), 5678--5682.
  • Nerman, Olle. On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrsch. verw. Gebiete 57 (1981), no. 3, 365--395. MR0629532
  • Roos, Bero. On the rate of multivariate Poisson convergence. J. Multivariate Anal. 69 (1999), no. 1, 120--134. MR1701409
  • Volz, Erik. SIR dynamics in random networks with heterogeneous connectivity. J. Math. Biol. 56 (2008), no. 3, 293--310. MR2358436
  • Whittle, P. The outcome of a stochastic epidemic—a note on Bailey's paper. Biometrika 42, (1955). 116--122. MR0070099

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.