The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Affentranger, Fernando; Schneider, Rolf. Random projections of regular simplices. Discrete Comput. Geom. 7 (1992), no. 3, 219--226. MR1149653
  • Barany, Imre. Random polytopes, convex bodies, and approximation. Stochastic geometry, 77--118, Lecture Notes in Math., 1892, Springer, Berlin, 2007. MR2327291
  • Baxter, Glen. A combinatorial lemma for complex numbers. Ann. Math. Statist. 32 1961 901--904. MR0126290
  • Biane, Philippe; Letac, Gérard. The mean perimeter of some random plane convex sets generated by a Brownian motion. J. Theoret. Probab. 24 (2011), no. 2, 330--341. MR2795042
  • Majumdar, Satya N.; Comtet, Alain; Randon-Furling, Julien. Random convex hulls and extreme value statistics. J. Stat. Phys. 138 (2010), no. 6, 955--1009. MR2601420
  • Cranston, M.; Hsu, P.; March, P. Smoothness of the convex hull of planar Brownian motion. Ann. Probab. 17 (1989), no. 1, 144--150. MR0972777
  • DeBlassie, R. Dante. The first exit time of a two-dimensional symmetric stable process from a wedge. Ann. Probab. 18 (1990), no. 3, 1034--1070. MR1062058
  • Donoho, David L.; Tanner, Jared. Neighborliness of randomly projected simplices in high dimensions. Proc. Natl. Acad. Sci. USA 102 (2005), no. 27, 9452--9457 (electronic). MR2168716
  • Evans, Steven N. On the Hausdorff dimension of Brownian cone points. Math. Proc. Cambridge Philos. Soc. 98 (1985), no. 2, 343--353. MR0795899
  • El Bachir, M.: L'enveloppe convexe du mouvement Brownien. phPh.D. thesis, Université Paul Sabatier, Toulouse, France 1983.
  • Eldan, Ronen. Extremal points of high-dimensional random walks and mixing times of a Brownian motion on the sphere. Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 1, 95--110. MR3161524
  • Fleury, B. Poincaré inequality in mean value for Gaussian polytopes. Probab. Theory Related Fields 152 (2012), no. 1-2, 141--178. MR2875755
  • Gao, F.; Vitale, R. A. Intrinsic volumes of the Brownian motion body. Discrete Comput. Geom. 26 (2001), no. 1, 41--50. MR1832728
  • Hug, Daniel; Reitzner, Matthias. Gaussian polytopes: variances and limit theorems. Adv. in Appl. Probab. 37 (2005), no. 2, 297--320. MR2144555
  • Kabluchko, Z. and Zaporozhets, D.: Intrinsic volumes of Sobolev Balls. phPreprint (2014).
  • Kinney, J. R. Convex hull of Brownian motion in $d$-dimensions. Israel J. Math. 4 1966 139--143. MR0205343
  • Klartag, Bo'az; Kozma, Gady. On the hyperplane conjecture for random convex sets. Israel J. Math. 170 (2009), 253--268. MR2506326
  • Kampf, Jurgen; Last, Gunter; Molchanov, Ilya. On the convex hull of symmetric stable processes. Proc. Amer. Math. Soc. 140 (2012), no. 7, 2527--2535. MR2898714
  • Mörters, Peter; Peres, Yuval. Brownian motion. With an appendix by Oded Schramm and Wendelin Werner. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. xii+403 pp. ISBN: 978-0-521-76018-8 MR2604525
  • Shorack, Galen R.; Wellner, Jon A. Empirical processes with applications to statistics. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. xxxviii+938 pp. ISBN: 0-471-86725-X MR0838963
  • Reitzner, Matthias. Random polytopes. New perspectives in stochastic geometry, 45--76, Oxford Univ. Press, Oxford, 2010. MR2654675
  • Schneider, Rolf. Recent results on random polytopes. Boll. Unione Mat. Ital. (9) 1 (2008), no. 1, 17--39. MR2387995
  • Schneider, Rolf; Weil, Wolfgang. Stochastic and integral geometry. Probability and its Applications (New York). Springer-Verlag, Berlin, 2008. xii+693 pp. ISBN: 978-3-540-78858-4 MR2455326
  • Takács, L.: Expected perimeter length. phAmer. Math. Monthly 87 (1980), 14--17.
  • Tsirelson, B. S. A geometric approach to maximum likelihood estimation for an infinite-dimensional Gaussian location. II. (Russian) Teor. Veroyatnost. i Primenen. 30 (1985), no. 4, 772--779. MR0816291


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.