The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Aït-Sahalia, Y., Cacho-Diaz, J., and Laeven, R. J. A. (2013). Modeling financial contagion using mutually exciting jump processes. Review of Financial Studies. (to appear).
  • Aït-Sahalia, Y. and Hurd, T. (2012). Portfolio choice in markets with contagion. Working paper. Bendheim Center for Finance at Princeton University.
  • Bowsher, Clive G. Modelling security market events in continuous time: intensity based, multivariate point process models. J. Econometrics 141 (2007), no. 2, 876--912. MR2413490
  • Brix, Anders; Kendall, Wilfrid S. Simulation of cluster point processes without edge effects. Adv. in Appl. Probab. 34 (2002), no. 2, 267--280. MR1909914
  • Chornoboy, E. S.; Schramm, L. P.; Karr, A. F. Maximum likelihood identification of neural point process systems. Biol. Cybernet. 59 (1988), no. 4-5, 265--275. MR0961117
  • Daley, D. J.; Vere-Jones, D. An introduction to the theory of point processes. Vol. I. Elementary theory and methods. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2003. xxii+469 pp. ISBN: 0-387-95541-0 MR1950431
  • Dassios, Angelos; Zhao, Hongbiao. A dynamic contagion process. Adv. in Appl. Probab. 43 (2011), no. 3, 814--846. MR2858222
  • Dassios, Angelos; Zhao, Hongbiao. Ruin by dynamic contagion claims. Insurance Math. Econom. 51 (2012), no. 1, 93--106. MR2928746
  • Embrechts, Paul; Liniger, Thomas; Lin, Lu. Multivariate Hawkes processes: an application to financial data. J. Appl. Probab. 48A (2011), New frontiers in applied probability: a Festschrift for Soren Asmussen, 367--378. ISBN: 0-902016-08-3 MR2865638
  • Engle, R. F. and Lunde, A. (2003). Trades and quotes: a bivariate point process. Journal of Financial Econometrics, 1(2):159--188.
  • Errais, Eymen; Giesecke, Kay; Goldberg, Lisa R. Affine point processes and portfolio credit risk. SIAM J. Financial Math. 1 (2010), 642--665. MR2719785
  • Giesecke, K. and Kim, B. (2007). Estimating tranche spreads by loss process simulation. In Proceedings of the 2007 Winter Simulation Conference, pages 967--975. IEEE Press.
  • Giesecke, K., Kim, B., and Zhu, S. (2011). Monte Carlo algorithms for default timing problems. Management Science, 57(12):2115--2129.
  • Hawkes, Alan G. Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 1971 83--90. MR0278410
  • Hawkes, Alan G.; Oakes, David. A cluster process representation of a self-exciting process. J. Appl. Probability 11 (1974), 493--503. MR0378093
  • Lewis, P. A. W.; Shedler, G. S. Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. Quart. 26 (1979), no. 3, 403--413. MR0546120
  • Liniger, T. J. (2009). Multivariate Hawkes Processes. PhD thesis, Eidgenössische Technische Hochschule (ETH).
  • Møller, Jesper; Rasmussen, Jakob G. Perfect simulation of Hawkes processes. Adv. in Appl. Probab. 37 (2005), no. 3, 629--646. MR2156552
  • Møller, Jesper; Rasmussen, Jakob G. Approximate simulation of Hawkes processes. Methodol. Comput. Appl. Probab. 8 (2006), no. 1, 53--64. MR2253076
  • Oakes, David. The Markovian self-exciting process. J. Appl. Probability 12 (1975), 69--77. MR0362522
  • Ogata, Y. (1981). On Lewis' simulation method for point processes. IEEE Transactions on Information Theory, 27(1):23--31.
  • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401):9--27.
  • Rasmussen, J. G. (2011). Bayesian inference for Hawkes processes. Methodology and Computing in Applied Probability, pages 1--20.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.