The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Anderson, William J. Continuous-time Markov chains. An applications-oriented approach. Springer Series in Statistics: Probability and its Applications. Springer-Verlag, New York, 1991. xii+355 pp. ISBN: 0-387-97369-9 MR1118840
  • Baik, Jinho; Deift, Percy; Johansson, Kurt. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (1999), no. 4, 1119--1178. MR1682248
  • Borodin, A. M. Harmonic analysis on the infinite symmetric group, and the Whittaker kernel. (Russian) Algebra i Analiz 12 (2000), no. 5, 28--63; translation in St. Petersburg Math. J. 12 (2001), no. 5, 733--759 MR1812941
  • Borodin, Alexei. Determinantal point processes. The Oxford handbook of random matrix theory, 231--249, Oxford Univ. Press, Oxford, 2011. MR2932631
  • Borodin, Alexei; Gorin, Vadim. Markov processes of infinitely many nonintersecting random walks. Probab. Theory Related Fields 155 (2013), no. 3-4, 935--997. MR3034797
  • Borodin, Alexei; Okounkov, Andrei; Olshanski, Grigori. Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 (2000), no. 3, 481--515 (electronic). MR1758751
  • Borodin, Alexei; Olshanski, Grigori. Distributions on partitions, point processes, and the hypergeometric kernel. Comm. Math. Phys. 211 (2000), no. 2, 335--358. MR1754518
  • Borodin, Alexei; Olshanski, Grigori. $Z$-measures on partitions and their scaling limits. European J. Combin. 26 (2005), no. 6, 795--834. MR2143199
  • Borodin, Alexei; Olshanski, Grigori. Random partitions and the gamma kernel. Adv. Math. 194 (2005), no. 1, 141--202. MR2141857
  • Borodin, Alexei; Olshanski, Grigori. Stochastic dynamics related to Plancherel measure on partitions. Representation theory, dynamical systems, and asymptotic combinatorics, 9--21, Amer. Math. Soc. Transl. Ser. 2, 217, Amer. Math. Soc., Providence, RI, 2006. MR2276098
  • Borodin, Alexei; Olshanski, Grigori. Markov processes on partitions. Probab. Theory Related Fields 135 (2006), no. 1, 84--152. MR2214152
  • Borodin, Alexei; Olshanski, Grigori. Infinite-dimensional diffusions as limits of random walks on partitions. Probab. Theory Related Fields 144 (2009), no. 1-2, 281--318. MR2480792
  • Borodin, Alexei; Olshanski, Grigori. Markov processes on the path space of the Gelfand-Tsetlin graph and on its boundary. J. Funct. Anal. 263 (2012), no. 1, 248--303. MR2920848
  • Borodin, A. and Olshanski, G.: The Young bouquet and its boundary. Moscow Math. J. 13 (2013), no. 2; ARXIV1110.4458.
  • Borodin, A. and Olshanski, G.: An interacting particle process related to Young tableaux, ARXIV1303.2795.
  • Dyson, Freeman J. A Brownian-motion model for the eigenvalues of a random matrix. J. Mathematical Phys. 3 1962 1191--1198. MR0148397
  • Eie, Birgit. The generalized Bessel process corresponding to an Ornstein-Uhlenbeck process. Scand. J. Statist. 10 (1983), no. 3, 247--250. MR0732920
  • Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085
  • Feller, Willy. On the integro-differential equations of purely discontinuous Markoff processes. Trans. Amer. Math. Soc. 48, (1940). 488--515. MR0002697
  • Jones, Liza Anne: Non-colliding diffusions and infinite particle systems. Thesis. University of Oxford, 2008.
  • Katori, Makoto; Tanemura, Hideki. Zeros of Airy function and relaxation process. J. Stat. Phys. 136 (2009), no. 6, 1177--1204. MR2550400
  • Katori, Makoto; Tanemura, Hideki. Non-equilibrium dynamics of Dyson's model with an infinite number of particles. Comm. Math. Phys. 293 (2010), no. 2, 469--497. MR2563791
  • Katori, M.; Tanemura, H. Markov property of determinantal processes with extended sine, Airy, and Bessel kernels. Markov Process. Related Fields 17 (2011), no. 4, 541--580. MR2918121
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. Hypergeometric orthogonal polynomials and their $q$-analogues. With a foreword by Tom H. Koornwinder. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. xx+578 pp. ISBN: 978-3-642-05013-8 MR2656096
  • König, Wolfgang. Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005), 385--447. MR2203677
  • Lenard, A. Correlation functions and the uniqueness of the state in classical statistical mechanics. Comm. Math. Phys. 30 (1973), 35--44. MR0323270
  • Liggett, Thomas M. Continuous time Markov processes. An introduction. Graduate Studies in Mathematics, 113. American Mathematical Society, Providence, RI, 2010. xii+271 pp. ISBN: 978-0-8218-4949-1 MR2574430
  • Okounkov, Andrei. Infinite wedge and random partitions. Selecta Math. (N.S.) 7 (2001), no. 1, 57--81. MR1856553
  • Okounkov, Andrei. ${\rm SL}(2)$ and $z$-measures. Random matrix models and their applications, 407--420, Math. Sci. Res. Inst. Publ., 40, Cambridge Univ. Press, Cambridge, 2001. MR1842795
  • Olshanski, Grigori. Point processes related to the infinite symmetric group. The orbit method in geometry and physics (Marseille, 2000), 349--393, Progr. Math., 213, Birkhäuser Boston, Boston, MA, 2003. MR1995385
  • Olshanski, G. Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 378 (2010), Teoriya Predstavlenii, Dinamicheskie Sistemy, Kombinatornye Metody. XVIII, 81--110, 230; translation in J. Math. Sci. (N. Y.) 174 (2011), no. 1, 41--57 MR2749298
  • Olshanski, Grigori. Laguerre and Meixner orthogonal bases in the algebra of symmetric functions. Int. Math. Res. Not. IMRN 2012, no. 16, 3615--3679. MR2959021
  • Olshanski, Grigori; Regev, Amitai; Vershik, Anatoly. Frobenius-Schur functions. With an appendix by Vladimir Ivanov. Progr. Math., 210, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), 251--299, Birkhäuser Boston, Boston, MA, 2003. MR1985729
  • Osada, Hirofumi. Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. Ann. Probab. 41 (2013), no. 1, 1--49. MR3059192
  • Osada, Hirofumi. Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials II: Airy random point field. Stochastic Process. Appl. 123 (2013), no. 3, 813--838. MR3005007
  • Sagan, Bruce E. The symmetric group. Representations, combinatorial algorithms, and symmetric functions. Second edition. Graduate Texts in Mathematics, 203. Springer-Verlag, New York, 2001. xvi+238 pp. ISBN: 0-387-95067-2 MR1824028
  • Soshnikov, A. Determinantal random point fields. (Russian) Uspekhi Mat. Nauk 55 (2000), no. 5(335), 107--160; translation in Russian Math. Surveys 55 (2000), no. 5, 923--975 MR1799012
  • Spohn, Herbert. Interacting Brownian particles: a study of Dyson's model. Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn., 1986), 151--179, IMA Vol. Math. Appl., 9, Springer, New York, 1987. MR0914993
  • Stanley, Richard P. Enumerative combinatorics. Vol. 2. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999. xii+581 pp. ISBN: 0-521-56069-1; 0-521-78987-7 MR1676282
  • Tracy, Craig A.; Widom, Harold. Differential equations for Dyson processes. Comm. Math. Phys. 252 (2004), no. 1-3, 7--41. MR2103903

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.