The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Abraham, Romain; Delmas, Jean-François. Williams' decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations. Stochastic Process. Appl. 119 (2009), no. 4, 1124--1143. MR2508567
  • Bertoin, Jean. The structure of the allelic partition of the total population for Galton-Watson processes with neutral mutations. Ann. Probab. 37 (2009), no. 4, 1502--1523. MR2546753
  • Bertoin, Jean; Fontbona, Joaquin; Martínez, Servet. On prolific individuals in a supercritical continuous-state branching process. J. Appl. Probab. 45 (2008), no. 3, 714--726. MR2455180
  • Bertoin, Jean; Le Gall, Jean-François. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 (2000), no. 2, 249--266. MR1771663
  • Bertoin, Jean; Le Gall, Jean-François. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003), no. 2, 261--288. MR1990057
  • Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9 MR1700749
  • Bingham, N. H. Continuous branching processes and spectral positivity. Stochastic Processes Appl. 4 (1976), no. 3, 217--242. MR0410961
  • Bolthausen, E.; Sznitman, A.-S. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys. 197 (1998), no. 2, 247--276. MR1652734
  • Caballero, Ma. Emilia; Lambert, Amaury; Uribe Bravo, Gerónimo. Proof(s) of the Lamperti representation of continuous-state branching processes. Probab. Surv. 6 (2009), 62--89. MR2592395
  • Donnelly, Peter; Kurtz, Thomas G. Particle representations for measure-valued population models. Ann. Probab. 27 (1999), no. 1, 166--205. MR1681126
  • Thomas Duquesne and Jean-Francois Le Gall, Random trees, Lévy processes and spatial branching processes, Astérisque (2002), no. 281, vi+147. 1954248
  • Dynkin, E. B.; Kuznetsov, S. E. $\Bbb N$-measures for branching exit Markov systems and their applications to differential equations. Probab. Theory Related Fields 130 (2004), no. 1, 135--150. MR2092876
  • Etheridge, Alison M. An introduction to superprocesses. University Lecture Series, 20. American Mathematical Society, Providence, RI, 2000. xii+187 pp. ISBN: 0-8218-2706-5 MR1779100
  • Grey, D. R. Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Probability 11 (1974), 669--677. MR0408016
  • Grimvall, Anders. On the convergence of sequences of branching processes. Ann. Probability 2 (1974), 1027--1045. MR0362529
  • Helland, Inge S. Continuity of a class of random time transformations. Stochastic Processes Appl. 7 (1978), no. 1, 79--99. MR0488203
  • Heyde, C. C. Extension of a result of Seneta for the super-critical Galton-Watson process. Ann. Math. Statist. 41 1970 739--742. MR0254929
  • Jiřina, Miloslav. Stochastic branching processes with continuous state space. Czechoslovak Math. J. 8 (83) 1958 292--313. MR0101554
  • S. E. Kuznetsov, Construction of Markov processes with random birth and death times, Theor. Probability Appl. 18 (1974), no. 3, 571--575. MR0343376
  • Kyprianou, Andreas E. Introductory lectures on fluctuations of Lévy processes with applications. Universitext. Springer-Verlag, Berlin, 2006. xiv+373 pp. ISBN: 978-3-540-31342-7; 3-540-31342-7 MR2250061
  • Labbé, Cyril. From flows of Lambda Fleming-Viot processes to lookdown processes via flows of partitions, arXiv:1107.3419 (2011).
  • Labbé, Cyril. Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property, to appear in Annales de l'Institut Henri Poincare (2014).
  • Lamperti, John. Continuous state branching processes. Bull. Amer. Math. Soc. 73 1967 382--386. MR0208685
  • Lamperti, John. The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 1967 271--288. MR0217893
  • Lamperti, John. Limiting distributions for branching processes. 1967 Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2 pp. 225--241 Univ. California Press, Berkeley, Calif. MR0219148
  • Le Gall, Jean-François. Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1999. x+163 pp. ISBN: 3-7643-6126-3 MR1714707
  • Li, Zenghu. Skew convolution semigroups and related immigration processes. (Russian) Teor. Veroyatnost. i Primenen. 46 (2001), no. 2, 247--274; translation in Theory Probab. Appl. 46 (2003), no. 2, 274--296 MR1968685
  • Li, Zenghu. Measure-valued branching Markov processes. Probability and its Applications (New York). Springer, Heidelberg, 2011. xii+350 pp. ISBN: 978-3-642-15003-6 MR2760602
  • Li, Zenghu. Continuous-state branching processes, Lectures Notes, arXiv:1202.3223, Beijing Normal University, 2012.
  • Seneta, E. On recent theorems concerning the supercritical Galton-Watson process. Ann. Math. Statist. 39 1968 2098--2102. MR0234530
  • Seneta, E. Functional equations and the Galton-Watson process. Advances in Appl. Probability 1 1969 1--42. MR0248917
  • Silverstein, M. L. A new approach to local times. J. Math. Mech. 17 1967/1968 1023--1054. MR0226734
  • Tribe, Roger. The behavior of superprocesses near extinction. Ann. Probab. 20 (1992), no. 1, 286--311. MR1143421

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.