The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Alexander, Kenneth S. Controlled random walk with a target site. Electron. Commun. Probab. 18 (2013), no. 43, 6 pp. MR3070909
  • Armstrong, Scott N.; Trokhimtchouk, Maxim. Long-time asymptotics for fully nonlinear homogeneous parabolic equations. Calc. Var. Partial Differential Equations 38 (2010), no. 3-4, 521--540. MR2647131
  • S. N. Armstrong and O. Zeitouni, Local asymptotics for controlled martingales, arXiv:1402.2402 (2014).
  • Barenblatt, G. I.; Sivashinskii, G. I. Self-similar solutions of the second kind in nonlinear filtration. Prikl. Mat. Meh. 33 861--870 (Russian); translated as J. Appl. Math. Mech. 33 1969 836--845 (1970). MR0263305
  • Barles, G.; Souganidis, P. E. Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991), no. 3, 271--283. MR1115933
  • de la Rue, Thierry. Vitesse de dispersion pour une classe de martingales. (French) [Rate of dispersion for a class of martingales] Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 4, 465--474. MR1914936
  • Kumagai, Takashi. Random walks on disordered media and their scaling limits. Lecture notes from the 40th Probability Summer School held in Saint-Flour, 2010. Lecture Notes in Mathematics, 2101. École d'été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School] Springer, Cham, 2014. x+147 pp. ISBN: 978-3-319-03151-4; 978-3-319-03152-1 MR3156983
  • Lee, James R.; Peres, Yuval. Harmonic maps on amenable groups and a diffusive lower bound for random walks. Ann. Probab. 41 (2013), no. 5, 3392--3419. MR3127886
  • McNamara, J. M. A regularity condition on the transition probability measure of a diffusion process. Stochastics 15 (1985), no. 3, 161--182. MR0869198
  • Y. Peres, B. Schapira and P. Sousi, Martingale defocusing and transience of a self-interacting random walk, arXiv:1403.1571 (2014).
  • C. K. Smart, Personal Communication (2012).
  • Woess, Wolfgang. Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics, 138. Cambridge University Press, Cambridge, 2000. xii+334 pp. ISBN: 0-521-55292-3 MR1743100

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.