The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  • Appleby, John A. D. Almost sure stability of linear Itò-Volterra equations with damped stochastic perturbations. Electron. Comm. Probab. 7 (2002), 223--234 (electronic). MR1952184
  • Appleby, John A. D.; Freeman, Alan. Exponential asymptotic stability of linear Ito-Volterra equations with damped stochastic perturbations. Electron. J. Probab. 8 (2003), no. 22, 22 pp. (electronic). MR2041823
  • Appleby, J. A. D. Exponential asymptotic stability of nonlinear Itò-Volterra equations with damped stochastic perturbations. Funct. Differ. Equ. 12 (2005), no. 1-2, 7--34. MR2137197
  • Da Prato G. and Grisvard P., Equations d'évolution abstraites non linéaires de type parabolique. Ann. Mat. Pura Appl. 120 (1979), 329-386. MR0551975
  • Da Prato, G.; Kwapień, S.; Zabczyk, J. Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23 (1987), no. 1, 1--23. MR0920798
  • Da Prato, Giuseppe; Zabczyk, Jerzy. Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. xviii+454 pp. ISBN: 0-521-38529-6 MR1207136
  • Ichikawa, Akira. Stability of semilinear stochastic evolution equations. J. Math. Anal. Appl. 90 (1982), no. 1, 12--44. MR0680861
  • Karczewska, Anna. Properties of convolutions arising in stochastic Volterra equations. Int. J. Contemp. Math. Sci. 2 (2007), no. 21-24, 1037--1052. MR2373900
  • Karczewska, Anna. Convolution type stochastic Volterra equations. Lecture Notes in Nonlinear Analysis, 10. Juliusz Schauder Center for Nonlinear Studies, Toruń, 2007. 101 pp. ISBN: 978-83-231-2116-9 MR2541635
  • Karczewska, Anna; Lizama, Carlos. Stochastic Volterra equations driven by cylindrical Wiener process. J. Evol. Equ. 7 (2007), no. 2, 373--386. MR2316483
  • Karczewska, Anna; Lizama, Carlos. Strong solutions to stochastic Volterra equations. J. Math. Anal. Appl. 349 (2009), no. 2, 301--310. MR2456189
  • Karczewska, A. On difficulties appearing in the study of stochastic Volterra equations. Quantum probability and related topics, 214--226, QP–PQ: Quantum Probab. White Noise Anal., 27, World Sci. Publ., Hackensack, NJ, 2011. MR2799126
  • Liu, Kai. Stability of infinite dimensional stochastic differential equations with applications. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 135. Chapman & Hall/CRC, Boca Raton, FL, 2006. xii+298 pp. ISBN: 978-1-58488-598-6; 1-58488-598-X MR2165651
  • Liu, Kai. Stochastic retarded evolution equations: Green operators, convolutions, and solutions. Stoch. Anal. Appl. 26 (2008), no. 3, 624--650. MR2401409
  • Liu, Kai. Stationary solutions of retarded Ornstein-Uhlenbeck processes in Hilbert spaces. Statist. Probab. Lett. 78 (2008), no. 13, 1775--1783. MR2453916
  • Liu, Kai. The fundamental solution and its role in the optimal control of infinite dimensional neutral systems. Appl. Math. Optim. 60 (2009), no. 1, 1--38. MR2511785
  • Liu, Kai. On regularity property of retarded Ornstein-Uhlenbeck processes in Hilbert spaces. J. Theoret. Probab. 25 (2012), no. 2, 565--593. MR2914442
  • Lizama, Carlos. On approximation and representation of $K$-regularized resolvent families. Integral Equations Operator Theory 41 (2001), no. 2, 223--229. MR1847173
  • Lunardi, Alessandra. Analytic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995. xviii+424 pp. ISBN: 3-7643-5172-1 MR1329547
  • Prüss, Jan. Evolutionary integral equations and applications. Monographs in Mathematics, 87. Birkhäuser Verlag, Basel, 1993. xxvi+366 pp. ISBN: 3-7643-2876-2 MR1238939
  • Pruss, Jan. Decay properties for the solutions of a partial differential equation with memory. Arch. Math. (Basel) 92 (2009), no. 2, 158--173. MR2481511

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.