Download this PDF file Fullscreen Fullscreen Off
References
- T. W. Anderson, The integral of symmetric unimodular functions over a symmetric convex set and some probability inequalities, Proc. Amer. Math. Soc. 6, (1955) 170--176. Math Review link
- R. F. Bass, and P. S. Griffin, The most visited site of Brownian motion and simple random walk, Z. Wahrsch. Verw. Gebiete 70, (1985) 417--436. Math Review link
- J. Bertoin and L. Marsalle, Point le plus visite par un mouvement brownien avec derive, Prepublication du Laboratoire de Probabilites No. 395, Universite Paris VI (1997) Math Review article not available.
- A. N. Borodin, Distributions of functionals of Brownian local time I and II, Th. Probab. Appl. 34, (1989) 385--401 and 576--590. Math Review link
- K. L. Chung, On the maximal partial sums of sequences of independent random variables, Trans. Amer. Math. Soc. 64, (1948) 205--233. Math Review link
- Z. Ciesielski and S. J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103, (1962) 434--450. Math Review link
- E. Csaki, On the lower limits of maxima and minima of Wiener process and partial sums, Z. Wahrsch. verw. Gebiete 43, (1978) 205--221. Math Review link
- E. Csaki, An integral test for the supremum of Wiener local time, Probab. Th. Rel. Fields 83, (1989) 207--217. Math Review link
- M. Csorgo and L. Horvath, On best possible approximations of local time, Statist. Probab. Lett. 8, (1989) 301--306. Math Review link
- N. Eisenbaum, Un theoreme de Ray--Knight lie au supremum des temps locaux browniens, Probab. Th. Rel. Fields 87, (1990) 79--95. Math Review link
- N. Eisenbaum, On the most visited sites by a symmetric stable process Probab. Th. Rel. Fields 107, (1997) 527--535. Math Review article not available.
- P. Erdos and P. Revesz, On the favourite points of a random walk, Mathematical Structures -- Computational Mathematics -- Mathematical Modelling 2, 152--157. Sofia (1984) Math Review link
- I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York (1980) Math Review link
- W. M. Hirsch, A strong law for the maximum cumulative sum of independent random variables, Comm. Pure Appl. Math. 18, (1965) 109--127. Math Review link
- Y. Hu and Z. Shi, Favourite sites of transient Brownian motion, Stoch. Proc. Appl. 73, (1998) 87--99. Math Review article not available.
- H. Kesten, An iterated logarithm law for the local time, Duke Math. J. 32, (1965) 447--456. Math Review link
- D. Khoshnevisan and T. M. Lewis, The favorite point of a Poisson process, Stoch. Proc. Appl. 57, (1995) 19--38. Math Review link
- F. B. Knight, Random walks and the sojourn density process of Brownian motion, Trans. Amer. Math. Soc. 109, (1963) 56--86. Math Review link
- C. Leuridan, Le point dun ferme le plus visite par le mouvement brownien, Ann. Probab. 25, (1997) 953--996. Math Review link
- D. Ray, Sojourn times of a diffusion process Illinois J. Math. 7, (1963) 615--630. Math Review link
- P. Revesz, Random Walk in Random and Non--Random Environments, World Scientific, Singapore (1990) Math Review link
- D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 2nd ed. (1994) Math Review link
- L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales, Vol. II: Ito Calculus, Wiley, Chichester (1987) Math Review link
- B. Toth, and W. Werner, Tied favourite edges for simple random walk, Combin. Probab. Comput. 6, (1997) 359--369. Math Review article not available.
- M. Yor, Local Times and Excursions for Brownian Motion: A Concise Introduction, Lecciones en Matematicas, Universidad Central de Venezuela (1995) Math Review article not available.

This work is licensed under a Creative Commons Attribution 3.0 License.