Download this PDF file Fullscreen Fullscreen Off
References
- D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs. Monograph in preparation, available at http://stat-www.berkeley.edu/users/aldous/RWG/book.html. Math. Review number not available.
- I. Benjamini, O. Häggström and E. Mossel. On random graph homomorphisms into Z. J. Combinatorial Th. (B) 78 no. 1 (2000), 86--114. Math. Review 2001c:60135
- B. Bollobás. Extremal Graph Theory. Academic Press, New York, 1978. Math. Review 80a:05120
- B. Bollobás. Modern Graph Theory. Springer, New York, 1998. Math. Review 99h:05001
- B. Bollobás. Random Graphs. Cambridge University Press, Cambridge, 2001. Math. Review 2002j:05132
- C. Borgs, J. Chayes, A. Frieze, J. Kim, P. Tetali, E. Vigoda, V. Vu. Torpid Mixing of some Monte Carlo Markov Chain algorithms in Statistical Physics. Proc. IEEE FOCS '99 218--229. Math. Review MR1917562
- R. Bubley and M. Dyer. Path coupling: a technique for proving rapid mixing in Markov chains. Proc. IEEE FOCS '97 223--231. Math. Review number not available.
- H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statistics 23 (1952), 493--507. Math. Review 15,241c
- R. Diestel. Graph Theory. Springer, New York, 2005. Math. Review 2006e:05001
- M. Dyer, A. Frieze and M. Jerrum. On counting independent sets in sparse graphs. SIAM J. Comp. 31 (2002), 1527--1541. Math. Review 2003h:68043
- M. Dyer, C. Greenhill, M. Molloy. Very rapid mixing of the Glauber dynamics for proper colorings on bounded degree graphs. Random Struc. & Alg. 20 (2002), 98--114. Math. Review 2002i:60131
- D. Galvin. On homomorphisms from the Hamming cube to Z. Isr. J. Math. 138 (2003), 189--213. Math. Review 2005b:05158
- D. Galvin and D. Randall. Torpid Mixing of Local Markov Chains on 3-Colorings of the Discrete Torus. Proc. ACM--SIAM SODA '07 376--384. No Math. Review number available.
- D. Galvin and P. Tetali. Slow mixing of Glauber dynamics for the hard-core model on the Hamming cube. Random Structures & Alg. 28 (2006) 427-443. Math. Review 2007a:05127
- M. Jerrum. A very simple algorithm for estimating the number of k-colourings of a low-degree graph. Random Struc. & Alg. 7 (1995), 157--165. Math. Review 97f:68070
- M. Jerrum and A. Sinclair. Conductance and the rapid mixing property for Markov chains: the approximation of the permanent resolved. Proc. ACM STOC '88 235--243. No Math. Review number available.
- J. Kahn. Range of cube-indexed random walk. Isreal J. Math. 124 (2001) 189--201. Math. Review 2002k:60173
- A. Korshunov and A. Sapozhenko. The number of binary codes with distance 2. Problemy Kibernet. 40 (1983), 111--130. (Russian) Math. Review 85a:94026
- T. Łuczak and E. Vigoda. Torpid mixing of the Wang-Swendsen-Kotecký algorithm for sampling colorings. J. Discrete Alg. 3 no. 1 (2005), 92--100. Math. Review 2006d:68268
- M. Molloy. Very rapidly mixing Markov chains for 2Δ-colourings and for independent sets in a 4-regular graph. Random Struc. & Alg. 18 (2001), 101--115. Math. Review 2002b:68036
- R. Montenegro and P. Tetali. Mathematical aspects of mixing times in Markov chains. Foundations and Trends in Theoretical Computer Science 1 no. 3 (2006), 237--354. Math. Review number not available.
- D. Randall. Mixing. Proc. IEEE FOCS '03 4--15. Math. Review number not available.
- D. Randall. Personal communication. Math. Review number not available.
- J. Salas and A. Sokal. Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem. J. Stat. Phys. 86 (1997), 551--579. Math. Review 98b:82020
- A. Sapozhenko. On the number of connected subsets with given cardinality of the boundary in bipartite graphs. Metody Diskret. Analiz. 45 (1987), 42--70. (Russian) Math. Review 89i:05168
- A. A. Sapozhenko. The number of antichains in ranked partially ordered sets. Diskret. Mat. 1 (1989), 74--93. (Russian; translation in Discrete Math. Appl. 1 no. 1 (1991), 35--58) Math. Review 91h:06006
- A. Sokal. Chromatic Polynomials, Potts Models and All That. Physica A279 (2000), 324--332. Math. Review number not available.
- A. Sokal. A Personal List of Unsolved Problems Concerning Lattice Gases and Antiferromagnetic Potts Models. Markov Process. Related Fields 7 (2001), 21--38. Math. Review MR1835744
- E. Vigoda. Improved bounds for sampling colorings. J. Math. Phys. 41 (2000), 1555--1569. Math. Review 2001a:60085

This work is licensed under a Creative Commons Attribution 3.0 License.