Download this PDF file Fullscreen Fullscreen Off
References
- E. Alos, O. Mazet and D. Nualart. Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (2001), 766--801. Math. Review 2002g:60083
- A. de Bouard and A. Debussche. The Stochastic Nonlinear Schrodinger Equation in H1. Stoch. Anal. Appl. 21 (2003), 97--126. Math. Review 2003k:60153
- A. de Bouard and A. Debussche. On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrodinger equation. Probab. Theory Related Fields 123 (2002), 76--96. Math. Review 2003m:60164
- G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications (1992) Cambridge University Press: Cambridge, England. Math. Review 95g:60073
- L. Decreusefond and A. Ustunel. Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999), 177--214. Math. Review 2000b:60133
- A. Debussche and E. Gautier. Small noise asymptotic of the timing jitter in soliton transmission. Preprint, Archive: math.PR/0609434
- E. Gautier. Large deviations and support results for nonlinear Schrodinger equations with additive noise and applications. ESAIM Probab. Stat. 9 (2005), 74--97. Math. Review 2006b:60139
- E. Gautier. Uniform large deviations for the nonlinear Schrodinger equation with multiplicative noise. Stochastic Process. Appl. 115 (2005), 1904--1927. Math. Review 2006h:60046
- E. Gautier. Exit from a neighborhood of zero for weakly damped stochastic nonlinear Schrodinger equations. To appear in Ann. Probab., Archive: math.NA/0602350
- C. Sulem and P.L. Sulem. The Nonlinear Schrodinger Equation, Self-Focusing and Wave Collapse. Appli. Math. Sci. 139 (1999) Springer-Verlag: New York. Math. Review 2000f:35139
- S. Tindel, C.A. Tudor and F. Viens. Stochastic evolution equations with fractional Brownian motion. Probab. Theory Related Fields 127 (2003) Springer-Verlag: New York. Math. Review 2004k:60180

This work is licensed under a Creative Commons Attribution 3.0 License.