Weak Convergence for the Row Sums of a Triangular Array of Empirical Processes Indexed by a Manageable Triangular Array of Functions
Abstract
We study the weak convergence for the row sums of a general triangular array of empirical processes indexed by a manageable class of functions converging to an arbitrary limit. As particular cases, we consider random series processes and normalized sums of i.i.d. random processes with Gaussian and stable limits. An application to linear regression is presented. In this application, the limit of the row sum of a triangular array of empirical process is the mixture of a Gaussian process with a random series process.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-17
Publication Date: April 23, 1999
DOI: 10.1214/EJP.v4-44
References
- Alexander, K. S. (1987a). Central limit theorems
for stochastic processes under random entropy conditions.
Probab. Theor. Rel. Fields
75 , 351-378. Math. Review 88h:60069 - Alexander, K. S. (1987b). The
central limit theorem for empirical processes
on Vapnik-Cervonenkis classes. Ann. Probab.
15 , 178-203. Math. Review 88f:60036 - Arcones, M. A. (1994).
Weak convergence of the row sums of a
triangular array of empirical processes
Distributional convergence of M-estimators under unusual rates.
Statist. Probab. Lett.
21 , 271-280. Math. Review 96a:62017 - Arcones, M. A. (1996). M-estimators converging to a stable limit. Preprint. Math. Review number not available.
- Arcones, M. A. (1998).
Weak convergence of the row sums of a
triangular array of empirical processes.
High Dimensional Probability.
Progress in Probability
43 , 1-25. Birkhäuser-Verlag, Basel. Math. Review number not available. - Arcones, M. A., Gaenssler, E. P. and Ziegler, K. (1992).
Partial-sum processes with random locations and indexed by
Vapnik-Cervonenkis classes of sets in arbitrary sample space.
Probability in Banach Spaces,
8 , 379-389. Birkhäuser, Boston. Math. Review 94k:60005 - Draper, N. R. and Smith, H. (1981). Applied Regression Analysis. Wiley, New York. Math. Review 82f:62002
- Dudley, R. M. (1978). Central limit
theorem for empirical measures. Ann. Probab.
6 , 899-929. Math. Review 81k:60029a - Dudley, R. M. (1984). A course
on empirical processes. Lect. Notes in Math.
1097 , 1-142. Springer-Verlag, New York, Math. Review 88e:60029 - Gaenssler, P. (1994). On recent developments in the theory of set-indexed processes. Asymptotic Statistics (Prague, 1993). 87-109. Contributions to Statistics, Physica, Heidelberg. Math. Review 95j:60002
- Gaenssler, P. and Ziegler, K. (1994).
A uniform law of large numbers for set-indexed processes
with applications to
empirical and partial-sum processes. Probability in
Banach Spaces
9 , (Sandjberg, 1993) 385-400, Birkhäuser Boston, Boston, MA. Math. Review 95k:60058 - Giné, E. and Zinn, J. (1984). Some limit theorems
for empirical processes. Ann. Probab.
12 , 929-989. Math. Review 86f:60028 - Giné, E. and Zinn, J. (1986).
Lectures on the central
limit theorem for empirical processes. Lect. Notes in Math
1221 , 50-112. Springer-Verlag, New York. Math. Review 88i:60063 - Gnedenko, B. V. and Kolmogorov, A. N. (1968). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley Publishing Company. Reading, Massachusetts. Math. Review 38 #1722
- Hoffmann-Jørgensen, J. (1991).
Stochastic Processes
on Polish Spaces. Various
Publications Series,
39. Aarhus University, Matematisk Institut, Aarhus, Denmark. Math. Review 95a:60047 - Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann.
Statist.
18 , 191-219. Math. Review 91f:62059 - Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York. Math. Review 88a:62004
- Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer-Verlag, New York. Math. Review 93c:60001
- Marcus, M. B. and Pisier, G.
(1981). Random Fourier Series with
Applications to Harmonic Analysis.
Ann. Math. Studies
10 . Princeton University Press, Princeton, New Jersey. Math. Review 83b:60031 - Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag, New York. Math. Review 86i:60074
- Pollard, D. (1990).
Empirical Processes: Theory
and Applications. NSF-CBMS Regional
Conference Series in Probab. and Statist.,
Vol.
2. Institute of Mathematical Statistics, Hayward, California. Math. Review 93e:60046 - Portnoy, S. and Koenker, R. (1997).
The Gaussian hare and the Laplacian tortoise: computability of
squared-error versus absolute-error estimators.
Statist. Science
12 , 279-300. Math. Review 98m:62195 - Romo, J. A. (1993).
Stable limits for
empirical processes on
Vapnik-Cervonenkis classes of functions.
J. Mult. Anal.
45 , 73-88. Math. Review 94j:60069 - Vapnik, V.N. and
Cervonenkis, A. Ja. (1971).
On the uniform convergence of relative frequencies of events to their
probabilities. Theory Probab. Appl.
16 , 164-280. Math. Review 46 #1010 - Vapnik, V.N. and Cervonenkis. A. Ja. (1981).
Necessary and sufficient conditions for the convergence of means to their
expectation. Theory Prob. Appl.
26 , 532-553. Math. Review 83d:60031 - van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and Empirical Processes with Applications to Statistics. Springer-Verlag, New York. Math. Review 97g:60035
- Ziegler, K. (1997). Functional central limit
theorems for triangular arrays of function-indexed
processes under uniformly integrable entropy conditions
J. Mult. Anal.
62 , 233-272. Math. Review 98j:60051

This work is licensed under a Creative Commons Attribution 3.0 License.