Download this PDF file Fullscreen Fullscreen Off
References
- Alexander, K. S. (1987a). Central limit theorems
for stochastic processes under random entropy conditions.
Probab. Theor. Rel. Fields
75 , 351-378. Math. Review 88h:60069 - Alexander, K. S. (1987b). The
central limit theorem for empirical processes
on Vapnik-Cervonenkis classes. Ann. Probab.
15 , 178-203. Math. Review 88f:60036 - Arcones, M. A. (1994).
Weak convergence of the row sums of a
triangular array of empirical processes
Distributional convergence of M-estimators under unusual rates.
Statist. Probab. Lett.
21 , 271-280. Math. Review 96a:62017 - Arcones, M. A. (1996). M-estimators converging to a stable limit. Preprint. Math. Review number not available.
- Arcones, M. A. (1998).
Weak convergence of the row sums of a
triangular array of empirical processes.
High Dimensional Probability.
Progress in Probability
43 , 1-25. Birkhäuser-Verlag, Basel. Math. Review number not available. - Arcones, M. A., Gaenssler, E. P. and Ziegler, K. (1992).
Partial-sum processes with random locations and indexed by
Vapnik-Cervonenkis classes of sets in arbitrary sample space.
Probability in Banach Spaces,
8 , 379-389. Birkhäuser, Boston. Math. Review 94k:60005 - Draper, N. R. and Smith, H. (1981). Applied Regression Analysis. Wiley, New York. Math. Review 82f:62002
- Dudley, R. M. (1978). Central limit
theorem for empirical measures. Ann. Probab.
6 , 899-929. Math. Review 81k:60029a - Dudley, R. M. (1984). A course
on empirical processes. Lect. Notes in Math.
1097 , 1-142. Springer-Verlag, New York, Math. Review 88e:60029 - Gaenssler, P. (1994). On recent developments in the theory of set-indexed processes. Asymptotic Statistics (Prague, 1993). 87-109. Contributions to Statistics, Physica, Heidelberg. Math. Review 95j:60002
- Gaenssler, P. and Ziegler, K. (1994).
A uniform law of large numbers for set-indexed processes
with applications to
empirical and partial-sum processes. Probability in
Banach Spaces
9 , (Sandjberg, 1993) 385-400, Birkhäuser Boston, Boston, MA. Math. Review 95k:60058 - Giné, E. and Zinn, J. (1984). Some limit theorems
for empirical processes. Ann. Probab.
12 , 929-989. Math. Review 86f:60028 - Giné, E. and Zinn, J. (1986).
Lectures on the central
limit theorem for empirical processes. Lect. Notes in Math
1221 , 50-112. Springer-Verlag, New York. Math. Review 88i:60063 - Gnedenko, B. V. and Kolmogorov, A. N. (1968). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley Publishing Company. Reading, Massachusetts. Math. Review 38 #1722
- Hoffmann-Jørgensen, J. (1991).
Stochastic Processes
on Polish Spaces. Various
Publications Series,
39. Aarhus University, Matematisk Institut, Aarhus, Denmark. Math. Review 95a:60047 - Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann.
Statist.
18 , 191-219. Math. Review 91f:62059 - Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York. Math. Review 88a:62004
- Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer-Verlag, New York. Math. Review 93c:60001
- Marcus, M. B. and Pisier, G.
(1981). Random Fourier Series with
Applications to Harmonic Analysis.
Ann. Math. Studies
10 . Princeton University Press, Princeton, New Jersey. Math. Review 83b:60031 - Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag, New York. Math. Review 86i:60074
- Pollard, D. (1990).
Empirical Processes: Theory
and Applications. NSF-CBMS Regional
Conference Series in Probab. and Statist.,
Vol.
2. Institute of Mathematical Statistics, Hayward, California. Math. Review 93e:60046 - Portnoy, S. and Koenker, R. (1997).
The Gaussian hare and the Laplacian tortoise: computability of
squared-error versus absolute-error estimators.
Statist. Science
12 , 279-300. Math. Review 98m:62195 - Romo, J. A. (1993).
Stable limits for
empirical processes on
Vapnik-Cervonenkis classes of functions.
J. Mult. Anal.
45 , 73-88. Math. Review 94j:60069 - Vapnik, V.N. and
Cervonenkis, A. Ja. (1971).
On the uniform convergence of relative frequencies of events to their
probabilities. Theory Probab. Appl.
16 , 164-280. Math. Review 46 #1010 - Vapnik, V.N. and Cervonenkis. A. Ja. (1981).
Necessary and sufficient conditions for the convergence of means to their
expectation. Theory Prob. Appl.
26 , 532-553. Math. Review 83d:60031 - van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and Empirical Processes with Applications to Statistics. Springer-Verlag, New York. Math. Review 97g:60035
- Ziegler, K. (1997). Functional central limit
theorems for triangular arrays of function-indexed
processes under uniformly integrable entropy conditions
J. Mult. Anal.
62 , 233-272. Math. Review 98j:60051

This work is licensed under a Creative Commons Attribution 3.0 License.