Ergodic Properties of Multidimensional Brownian Motion with Rebirth

Ilie Grigorescu (University of Miami)
Min Kang (North Carolina State University)

Abstract


In a bounded open region of the $d$ dimensional space we consider a Brownian motion which is reborn at a fixed interior point as soon as it reaches the boundary. The evolution is invariant with respect to a density equal, modulo a constant, to the Green function of the Dirichlet Laplacian centered at the point of return. We calculate the resolvent in closed form, study its spectral properties and determine explicitly the spectrum in dimension one. Two proofs of the exponential ergodicity are given, one using the inverse Laplace transform and properties of analytic semigroups, and the other based on Doeblin's condition. Both methods admit generalizations to a wide class of processes.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1299-1322

Publication Date: October 19, 2007

DOI: 10.1214/EJP.v12-450

References

  1. Athreya, K., Atuncar, G.S. Kernel estimation for real-valued Markov chains. Sankhya: The Indian Journal of Statistics 60, Series A, Pt.1, (1998) 1--17. 1714774
  2. Ben-Ari, I., Pinsky, R.G. Ergodic behavior of diffusions with random jumps from the boundary and spectral analysis of an elliptic operator with nonlocal boundary condition. Preprint. Math. Review number not available.
  3. Burdzy, K., Hol yst, R., March, P. A Fleming-Viot particle representation of the Dirichlet Laplacian. Comm. Math. Phys. 214, no. 3. (2000) 679--703 1800866
  4. Down, D., Meyn, P., Tweedie, R. L. Exponential and uniform ergodicity of Markov processes. Ann. Probab., Vol. 23, No. 4, (1995) 1671--1691. 1379163
  5. Doetsch, G. Handbuch der Laplace-Transformation. , Band 1. Birkh"{a}user, Basel. (1950) 0344808
  6. Duffie, D. Dynamic asset pricing theory. Princeton University Press, Princeton, NJ. (1996) Math. Review number not available.
  7. Evans, L.C. Partial Differential Equations. American Mathematical Society, Providence, R.I. (1998) 1625845
  8. Feller, W. Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77, (1954) 1--31. 0063607
  9. Grigorescu, I., Kang, M. Path collapse for multidimensional Brownian motion with rebirth. Statist. Probab. Lett. 70, no. 3, (2004) 199--209. 2108086
  10. Grigorescu, I., Kang, M. Brownian Motion on the Figure Eight. Journ. Theoret. Probab. 15 (3) (2002) 817--844. 1922448
  11. Grigorescu, I., Kang, M. Hydrodynamic Limit for a Fleming-Viot Type System. Stochastic Process. Appl. 110, no. 1, (2004) 111--143. 2052139
  12. Grigorescu, I., Kang, M. Tagged Particle Limit for a Fleming-Viot Type System. Electronic Journal of Probability. 11, (2006) 311--331. 2217819
  13. It^{o}, K., McKean, H.P. Diffusion Processes and their Sample Paths. Springer-Verlag, Berlin. (1965) 0345224
  14. Liggett, T. Interacting Particle Systems. Springer-Verlag, New York. (1985) 0776231
  15. Mandl, P. Analytical treatment of one-dimensional Markov processes. Springer-Verlag, New York. (1968) 0247667
  16. Meyn, P., Tweedie, R. L. Markov Chains and Stochastic Stability. Springer-Verlag, London. (1993) 1287609
  17. Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York. (1983) 0710486
  18. Stewart, H.B. Generation of Analytic Semigroups by Strongly Elliptic Operators. Trans. Amer. Math. Soc. 199, (1974) 141--162. 0358067
  19. Stewart, H.B. Generation of Analytic Semigroups by Strongly Elliptic Operators Under General Boundary Conditions. Trans. Amer. Math. Soc. 259, (1980) 299--310. 0561838
  20. Yosida, K. Functional Analysis. Second edition. Die Grundlehren der mathematischen Wissenschaften, Band 123 Springer-Verlag New York Inc., Berlin. (1968) 0239384


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.