Download this PDF file Fullscreen Fullscreen Off
References
- Bedford, T., and Fisher, A.M., Analogues of the Lebesgue density theorem for fractal sets of reals and integers. Proc. London Math. Soc.(3). 64 (1992) 95--124. Math. Review 92j:58058
- Dynkin, E.B., Additive functionals of several time--reversible Markov processes. J. Funct. Anal. 42 (1981) 64--101. Math. Review 82i:60124
- Falconer, K.J., Techniques in fractal geometry. Wiley, Chichester, 1997.
- Falconer, K.J., Wavelet transforms and order--two densities of fractals. Journ. Stat. Phys., 67 (1992) 781--793. Math. Review 93d:28015
- Falconer, K.J., and Springer, O.B., Order--two density of sets and measures with non--integral dimension. Mathematika. 42 (1995) 1--14. Math. Review 96i:28003
- Falconer, K.J., and Xiao, Y., Average densities of the image and zero set of stable processes. Stoch. Proc. Appl. 55 (1995) 271--283. Math. Review 96b:60192
- Geman, D., Horowitz, J., and Rosen, J., A local time analysis of intersections of Brownian motion in the plane. Ann. Probab. 12 (1984) 86--107. Math. Review 85m:60071
- Kallenberg, O., Random Measures. Akademie-Verlag, Berlin, 1983. Math. Review 85f:60076
- Le Gall, J.F., Sur la saucisse de Wiener et les points multiples du mouvement brownien. Ann. Probab. 14 (1986) 1219--1244. Math. Review 88e:60097
- Le Gall, J.F., The exact Hausdorff measure of Brownian multiple points I and II. In: Seminar on Stochastic Processes 1986, 107--137, Birkhäuser, Boston 1987 and Seminar on Stochastic Processes 1988, 193--197, Birkhäuser, Boston 1989. Math. Review 89a:60188 and Math. Review 90f:60139
- Le Gall, J.F., Some properties of planar Brownian motion. In: Lecture Notes in Math. Vol. 1527, Springer Verlag (New York) 1992. Math. Review 94b:60001
- Le Gall, J.F., and Taylor, S.J., The packing measure of planar Brownian motion. In: Seminar on Stochastic Processes 1986, 139--147, Birkhäuser, Boston 1987. Math. Review 89a:60189
- Leistritz, L., Ph.D. Dissertation, University of Jena (1994).
- Marstrand, J.M., Order--two density and the strong law of large numbers. Mathematika. 43 (1996) 1--22. Math. Review 97f:28022
- Mandelbrot, B.B., Measures of fractal lacunarity: Minkowski content and alternatives. In: Bandt, Graf, Zähle (Eds.), Fractal Geometry and Stochastics, 15--42, Birkhäuser (Basel) 1995. Math. Review 97d:28009
- Mattila, P., The Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge, 1995. Math. Review 96h:28006
- Mecke, J., Stationäre zufällige Maße auf lokalkompakten abelschen Gruppen. Zeitschr. f. Wahrsch. verw. Gebiete, 9 (1967) 36--58. Math. Review 37 #3611
- Mörters, P., Average densities and linear rectifiability of measures. Mathematika 44 (1997) 313-324. Math. Review 99c:28014
- Mörters, P., Symmetry properties of average densities and tangent measure distributions of measures on the line. Adv. Appl. Math. 21 (1998) 146--179. Math. Review 99e:28015
- Mörters, P., The average density of the path of planar Brownian motion. Stoch. Proc. Appl. 74 (1998) 133--149. Math. Review 99d:60092
- Mörters, P., and Preiss, D., Tangent measure distributions of fractal measures. Math. Ann. 312 (1998) 53--93.
- Patzschke, N., and Zähle, M., Fractional differentiation in the self--affine case IV. Random measures. Stoch. Stoch. Rep. 49 (1994) 87--98.
- Ray, D., Sojourn times and the exact Hausdorff measure of the sample paths of planar Brownian motion. Trans. Amer. Math. Soc. 108 (1963) 436--444. Math. Review 26 #3129
- Shieh, N.R., A growth condition for Brownian intersection points. In: Trends in Probability and Related Analysis, Proceedings of SAP'96, 265--272, World Scientific Singapore 1997. Math. Review 98k:60004
- Taylor, S.J., The measure theory of random fractals. Math. Proc. Camb. Phil. Soc. 100 (1986) 383--486. Math. Review 87k:60189
- Zähle, U., Self-similar random measures I. Notion, carrying Hausdorff dimension and hyperbolic distribution. Prob. Th. Rel. Fields. 80 (1988) 79--100. Math. Review 89m:28014

This work is licensed under a Creative Commons Attribution 3.0 License.