Download this PDF file Fullscreen Fullscreen Off
References
- Austin, D.G., Edgar, G.A. and Ionescu Tulcea, A., (1974). Pointwise convergence in terms of expectations. Z. Wahrsch. verv Gebiete 30, 17-26. Math. Review 50 #11402.
- Berbee, H.C.P. (1979). Random Walks with Stationary Increments and Renewal Theory, Mathematisch Centrum, Amsterdam. Math. Review 81e:60093 .
- Billingsley, P. (1968). Convergence of Probability Measures, Wiley. Math. Review 38 #1718.
- Bradley, R.C. (1986). Basic properties of strong mixing conditions, Progress in Prob. and Stat., Dependence in Prob. and Stat., 11, E. Eberlein and M. Taqqu (eds.), 165-192. Math. Review 88g:60039.
- Bradley, R.C., Utev, S.A. (1994). On second order properties of mixing sequences of random fields, Prob. Theory and Math. Stat., B. Grigelionis et al (eds.), 99-120, VSP/TEV. Math. Review 99f:60092.
- Doukhan, P. (1994). Mixing properties and examples, Lecture Notes in Statistics 85, Springer Verlag. Math. Review 96b:60090.
- Edgar, G.A. and Sucheston, L. (1976). Amarts: A class of asymptotic martingales, J. Multiv. Anal., 6, 193-221. Math. Review 54 #1368.
- Edgar, G.A., Sucheston, L. (1992). Stopping times and directed processes, Encyclopedia of Mathematics and its Applications, Cambridge University Press. Math. Review 94a:60064.
- Garsia, A. (1973). On a convex function inequality for submartingales, Ann. Probab., 1, 171-174. Math. Review 49 #11618.
- Gut, A., Schmidt, K. (1983). Amarts and set function processes, Lecture Notes in Math 1042, Springer-Verlag. Math. Review 85k:60064.
- Gut, A. (1986). Stopped Random Walks Limit Theorems and Applications, Applied Probability, Springer-Verlag. Math. Review 88m:60085.
- Houdre, C. (1995). On the almost sure convergence of series of stationary and related nonstationary variables, Ann. Probab., 23, 1204-1218. Math. Review 96e:60051 .
- Ibragimov, I.A., Linnik, Yu. V. (1971). Independent and stationary sequences of random variables, Walters-Noordhoff, Groningen, the Netherlands. Math. Review 48 #1287.
- Krengel, V., Sucheston, L. (1978). On semiamarts, amarts and processes with finite value, Advances in Prob., 4, 197-266. Math. Review 80g:60053.
- McLeish, D.L. (1975). A maximal inequality and dependent strong laws. Ann. Probab., 3, 829-39. Math. Review 53 #4216.
- Moricz, F. (1976). Moment inequalities and strong laws of large numbers, Z. Wahrsch. Verw. Gebiete, 35, 299-314. Math. Review 53 #11717.
- Newman, C., Wright, A. (1982). Associated random variables and martingale inequalities, Z. Wahr. verw. Gebiete, 59, 361-371. Math. Review 85d:60088.
- Peligrad, M. (1985a). An invariance principle for j-mixing sequences, Ann. Probab., 13, 1304-1313. Math. Review 87b:60056.
- Peligrad, M. (1985b). Convergence rates of the strong law for stationary mixing sequences. Z. Wahrsch. verw. Gebiete, 70, 307-314. Math. Review 86k:60052.
- Peligrad, M. (1992). On the central limit theorem for weakly dependent sequences with a decomposed strong mixing coefficient. Stochastic Proc. Appl., 42, 181-193. Math. Review 93j:60044.
- Petrov, V.V. (1975). Sums of independent random variables, Springer Verlag. Math. Review 52 #9335.
- Rio, E. (1993). Covariance inequalities for strongly mixing processes, Ann. Inst. H. Poincaré, 29, 4, 589-597. Math. Review 94j:60045.
- Rio, E. (1995). A maximal inequality and dependent Marcinkiewicz-Zygmund strong laws, Ann. Probab. 23, 918-937. Math. Review 96e:60053.
- Roussas, G.G. (1991). Recursive estimation of the transition distribution function of a Markov process: asymptotic normality, Statist. Probab. Lett., 11, 435-447. Math. Review 92h:62142.
- Roussas, G.G. (1992). Exact rates of almost sure convergence of a recursive kernel estimate of a probability density function: application to regression and hazard rate estimation. J. Nonpar. Statist., 1, 171-195. Math. Review 94j:62091
- Shao, Q. (1995). Maximal inequalities for partial sums of r-mixing sequences. Ann. Probab., 23, 948-965. Math. Review 96d:60027.
- Shao, Q. (1993). Complete convergence for a-mixing sequences, Stat. and Prob. Letters 16, 279-287. Math. Review 94d:60036.
- Utev, S.A. (1991). Sums of random variables with j-mixing, Siberian Adv. Math. 1, 124-155. Math. Review CMP 1 128 381.

This work is licensed under a Creative Commons Attribution 3.0 License.