Download this PDF file Fullscreen Fullscreen Off
References
- A. de Acosta, Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm. Ann. Probab. 11, (1983), 78--101. Math. Review number MR84m:60038
- R. J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Institute of Mathematical Statistics. Hayward, CA. 1990. Math. Review number MR92g:60053
- N. Bingham, C. Goldie and J. Teugels, Regular Variation. Cambridge University Press, 1987. Math. Review number MR90i:26003
- Z. Ciesielski and S. J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103, 1962, 434--450. Math. Review number MR26:816
- P. Deheuvels and D. M. Mason, Random fractals generated by oscillations of processes with stationary and independent increments. Probability in Banach spaces, 9 (Sandjberg, 1993), 73--89, Progr. Probab., 35, Birkhäuser Boston, 1994. Math. Review number MR96b:60191
- P. Deheuvels and D. M. Mason, Random fractal functional laws of the iterated logarithm. Studia Sci. Math. Hungar. 34, (1998), 89--106. Math. Review number MR99g:60061
- A. Dembo, Y. Peres, J. Rosen and O. Zeitouni, Thick points for spatial Brownian motion: multifractal analysis of occupation measure. Ann. of Probab. to appear. Math. Review number not available.
- A. Dembo and O. Zeitouni, Large deviations techniques and applications, second edition. Applications of Mathematics, 38. Springer-Verlag, New York, 1998. Math. Review number MR99d:60030
- J. Hawkes, On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set. Z. Wahr. verw. Geb., 19, (1971), 90--102. Math. Review number MR45:1252
- K. Itô and H. P. McKean, Jr., Diffusion Processes and Their Sample Paths. Springer-Verlag, Berlin-New York, 1965. Math. Review number MR33:8031
- H. Joyce and D. Preiss, On the existence of subsets of finite positive packing measure. Mathematika, 42, (1995), 15--24. Math. Review number MR96g:28010
- J.-P. Kahane, Some Random Series of Functions, second edition. Cambridge University Press, 1985. Math. Review number MR87m:60119
- R. Kaufman, Large increments of Brownian motion. Nagoya Math. J., 56, (1975), 139--145. Math. Review number MR51:7021
- D. Khoshnevisan and Z. Shi, Fast sets and points for fractional Brownian motion. Séminaire de Probabilités XXXIV, to appear. Math. Review number not available.
- P. Lévy, La mesure de Hausdorff de la courbe du mouvement brownien. Giorn. Ist. Ital. Attuari, 16, (1953), 1--37. Math. Review number MR16:268f
- M. B. Marcus, Hölder conditions for Gaussian processes with stationary increments. Trans. Amer. Math. Soc., 134, (1968), 29--52. Math. Review number MR37:5930
- P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, 1995. Math. Review number MR96h:28006
- J. R. Munkres, Topology: a First Course. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1975. Math. Review number MR57:4063
- S. Orey and W. E. Pruitt, Sample functions of the N-parameter Wiener process. Ann. of Probab. 1, (1973), 138--163. Math. Review number MR49 #11646
- S. Orey and S. J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc., 28, (1974), 174--192. Math. Review number MR50 #11486
- Y. Peres, Intersection-equivalence of Brownian paths and certain branching processes. Commun. Math. Phys., 177, (1996), 417--434. Math. Review number MR98k:60143
- Y. Peres, Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. Henri Poincaré (Physique théorique) 64, (1996), 339--347. Math. Review number MR97j:60138
- V. Strassen, An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete, 3, (1964), 211--226. Math. Review number MR30:5379
- S. J. Taylor, The measure theory of random fractals. Math. Proc. Cambridge Phil. Soc., 100, (1986), 383--406. Math. Review number MR87k:60189
- J. B. Walsh, An Introduction to Stochastic Partial Differential Equations. Ecole d'été de probabilités de Saint-Flour, XIV---1984, 265--439, Lecture Notes in Math. 1180, Springer, Berlin-New York, 1986. Math. Review number MR88a:60114

This work is licensed under a Creative Commons Attribution 3.0 License.