On the Exponentials of Fractional Ornstein-Uhlenbeck Processes
Narn-Rueih Shieh (Department of Mathematics, National Taiwan University)
Abstract
We study the correlation decay and the expected maximal increment (Burkholder-Davis-Gundy type inequalities) of the exponential process determined by a fractional Ornstein-Uhlenbeck process. The method is to apply integration by parts formula on integral representations of fractional Ornstein-Uhlenbeck processes, and also to use Slepian's inequality. As an application, we attempt Kahane's T-martingale theory based on our exponential process which is shown to be of long memory.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 594-611
Publication Date: February 27, 2009
DOI: 10.1214/EJP.v14-628
References
- V.V. Anh, N.N. Leonenko and N.-R. Shieh. Multifractal products of stationary diffusion processes. To appear in Stochastic Anal. Appl. Math. Review number not available.
- Ph. Carmona, F. Petit and M. Yor. On the distribution and asymptotic results for exponential functionals of Levy processes. In Exponential Functionals and Principal Values Related to Brownian Motion (ed. M. Yor), 1997, Biblioteca de la Revista Matematica Iberoamericana, pp. 73-126. MR1648657
- Ph. Carmona, F. Petit and M. Yor. Exponential functionals of Levy processes.@ In Levy Processes: Theory and Applications, eds. O.E. Barndorff-Nielsen, T. Mikosch and S.I. Resnick, Birkhauser, 2001, pp. 41-55. MR1833691
- P. Cheridito, H. Kawaguchi and M. Maejima. Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8 (2003), paper 3, 1-14. MR1961165
- P. Embrechts and M. Maejima. Selfsimilar Processes. Princeton Series in Applied Mathematics, Princeton University Press, 2002. MR1920153
- I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products. Translated from the Russian. Sixth edition. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. Academic Press, Inc., San Diego, CA, 2000. MR1773820
- S.E. Graversen and G. Peskir. Maximal inequalities for the Ornstein-Uhlenbeck process. Proc. Amer. Math. Soc. 128 (2000), 3035-3041. MR1664394
- J.P. Kahane. Random coverings and multiplicative processes. Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998) Progr. Probab. 46 , Birkhauser, Basel, 2000. pp.125-146 MR1785624
- M.R. Leadbetter, G. Lindgren and H. Rootzen. Extremes and Related Properties of Random Sequences and processes. Springer Series in Statistics. Springer-Verlag, New York-Berlin, 1983. MR0691492
- P. Mannersalo, I. Norros and R.H. Riedi. Multifractal products of stochastic processes: construction and some basic properties. Adv. in Appl. Probab. 34 (2002), 888-903. MR1938947
- J. Memin, Y. Mishura and E. Valkeila. Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Statist. Probab. Lett. 51 (2001), 197-206. MR1822771
- Y.S. Mishura. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics, 1929. Springer-Verlag, Berlin, 2008. MR2378138
- A. Novikov and E. Valkeila. On some maximal inequalities for fractional Brownian motions. Statist. Probab. Lett. 44 (1999), 47-54. MR1706311
- J. Peyriere. Recent results on Mandelbrot multiplicative cascades. Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998) Progr. Probab. 46 Birkhauser, Basel, 2000, pp.147-159. MR1785625
- Pipiras, V. and M.S. Taqqu. Integration questions related to fractional Brownian motion. Probab. Theory Related Fields 118 (2000), 251-291. MR1790083
- D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999, MR1725357
- A.A. Ruzmaikina. Stieltjes integrals of Holder continuous functions with applications to fractional Brownian motion. J. Statist. Phys. 100 (2000), 1049-1069. MR1798553
- G. Samorodnitsky. Long range dependence. Found. Trends Stoch. Syst. 1 (2006), 163-257. MR2379935
- G. Samorodnitsky and M.S. Taqqu. Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance (1994), Chapman and Hall, New York. MR1280932
- P.E. Protter. Stochastic Integration and Differential Equations. Second edition. Applications of Mathematics (New York), 21. Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2004. MR2020294
- D. Slepian. The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41 (1962), 463-501. MR0133183
- R.L. Wheeden and A. Zygmund. Measure and Integral, Marcel Dekker, New York-Basel, 1977. MR0492146

This work is licensed under a Creative Commons Attribution 3.0 License.