Download this PDF file Fullscreen Fullscreen Off
References
- Banerjee, Sudipto; Carlin, Brad P.; Gelfand, Alan E. Hierarchical Modeling and Analysis for Spatial Data, Chapman and Hall, Boca Raton, FL, 2004. Math. Review number not available.
- Bhatnagar, Nayantara; Randall, Dana. Torpid mixing of simulated tempering on the Potts model. Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 478--487 (electronic), ACM, New York, 2004. MR2291087
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6 (1984), 721--741. Math. Review number not available.
- Geyer, C. J. Markov chain Monte Carlo maximum likelihood. In Computing Science and Statistics, Volume 23: Proceedings of the 23rd Symposium on the Interface, E. Keramidas, Ed., 156--163, Interface Foundation of North America, Fairfax Station, VA, 1991. Math. Review number not available.
- Geyer, C. J.; Thompson, E. A. Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90 (1995), 909--920. Math. Review number not available.
- Gore, Vivek K.; Jerrum, Mark R. The Swendsen-Wang process does not always mix rapidly. J. Statist. Phys. 97 (1999), no. 1-2, 67--86. MR1733467 (2001f:82046)
- Green, Peter J.; Richardson, Sylvia. Hidden Markov models and disease mapping. J. Amer. Statist. Assoc. 97 (2002), no. 460, 1055--1070. MR1951259
- Kannan, Ravi; Li, Guangxing. Sampling according to the multivariate normal density. 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), 204--212, IEEE Comput. Soc. Press, Los Alamitos, CA, 1996. MR1450618
- Lawler, Gregory F.; Sokal, Alan D. Bounds on the $Lsp 2$ spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality. Trans. Amer. Math. Soc. 309 (1988), no. 2, 557--580. MR0930082 (89h:60105)
- Madras, Neal; Randall, Dana. Markov chain decomposition for convergence rate analysis. Ann. Appl. Probab. 12 (2002), no. 2, 581--606. MR1910641 (2003d:60135)
- Madras, Neal; Slade, Gordon. The self-avoiding walk. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1993. xiv+425 pp. ISBN: 0-8176-3589-0 MR1197356 (94f:82002)
- Madras, Neal; Zheng, Zhongrong. On the swapping algorithm. Random Structures Algorithms 22 (2003), no. 1, 66--97. MR1943860 (2004c:82117)
- Marinari, E. ; Parisi, G. Simulated tempering: a new Monte Carlo scheme. Europhysics Letters 19 (1992), 451--458. Math. Review number not available.
- Matthews, Peter. A slowly mixing Markov chain with implications for Gibbs sampling. Statist. Probab. Lett. 17 (1993), no. 3, 231--236. MR1229942 (94b:60079)
- Predescu, C. ; Predescu, M. ; Ciobanu, C. V. The incomplete beta function law for parallel tempering sampling of classical canonical systems. J. Chem. Phys. 120 (2004), 4119--4128. Math. Review number not available.
- Roberts, Gareth O.; Rosenthal, Jeffrey S. General state space Markov chains and MCMC algorithms. Probab. Surv. 1 (2004), 20--71 (electronic). MR2095565 (2005i:60135)
- Roberts, G. O.; Tweedie, R. L. Rates of convergence of stochastically monotone and continuous time Markov models. J. Appl. Probab. 37 (2000), no. 2, 359--373. MR1780996 (2001i:60111)
- Schmidler, S. C.; Woodard, D. B. Computational complexity and Bayesian analysis, In preparation. Math. Review number not available.
- Tierney, Luke. Markov chains for exploring posterior distributions. With discussion and a rejoinder by the author. Ann. Statist. 22 (1994), no. 4, 1701--1762. MR1329166 (96m:60150)
- Woodard, D. B. Conditions for rapid and torpid mixing of parallel and simulated tempering on multimodal distributions. Ph.D. thesis, Duke University, 2007. Math. Review number not available.
- Woodard, D. B. Detecting poor convergence of posterior samplers due to multimodality. Discussion Paper 2008-05, Duke University, Dept. of Statistical Science, 2008. Math. Review number not available.
- Woodard, D. B. , Schmidler, S. C. , Huber, M. Conditions for rapid mixing of parallel and simulated tempering on multimodal distributions. In press, Annals of Applied Probability, 2009. Math. Review number not available.
- Yuen, W. K. Application of geometric bounds to convergence rates of Markov chains and Markov processes on R^n, Ph.D. thesis, University of Toronto, 2001. Math. Review number not available.
- Zheng, Zhongrong. On swapping and simulated tempering algorithms. Stochastic Process. Appl. 104 (2003), no. 1, 131--154. MR1956476 (2003m:60197)

This work is licensed under a Creative Commons Attribution 3.0 License.